W3cubDocs

/TensorFlow 2.3

tf.raw_ops.FakeQuantWithMinMaxVarsPerChannelGradient

Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.

Args
gradients A Tensor of type float32. Backpropagated gradients above the FakeQuantWithMinMaxVars operation, shape one of: [d], [b, d], [b, h, w, d].
inputs A Tensor of type float32. Values passed as inputs to the FakeQuantWithMinMaxVars operation, shape same as gradients. min, max: Quantization interval, floats of shape [d].
min A Tensor of type float32.
max A Tensor of type float32.
num_bits An optional int. Defaults to 8. The bitwidth of the quantization; between 2 and 16, inclusive.
narrow_range An optional bool. Defaults to False. Whether to quantize into 2^num_bits - 1 distinct values.
name A name for the operation (optional).
Returns
A tuple of Tensor objects (backprops_wrt_input, backprop_wrt_min, backprop_wrt_max).
backprops_wrt_input A Tensor of type float32.
backprop_wrt_min A Tensor of type float32.
backprop_wrt_max A Tensor of type float32.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/FakeQuantWithMinMaxVarsPerChannelGradient