W3cubDocs

/TensorFlow 2.3

tf.raw_ops.QuantizedInstanceNorm

Quantized Instance normalization.

Args
x A Tensor. Must be one of the following types: qint8, quint8, qint32, qint16, quint16. A 4D input Tensor.
x_min A Tensor of type float32. The value represented by the lowest quantized input.
x_max A Tensor of type float32. The value represented by the highest quantized input.
output_range_given An optional bool. Defaults to False. If True, given_y_min and given_y_min and given_y_max are used as the output range. Otherwise, the implementation computes the output range.
given_y_min An optional float. Defaults to 0. Output in y_min if output_range_given is True.
given_y_max An optional float. Defaults to 0. Output in y_max if output_range_given is True.
variance_epsilon An optional float. Defaults to 1e-05. A small float number to avoid dividing by 0.
min_separation An optional float. Defaults to 0.001. Minimum value of y_max - y_min
name A name for the operation (optional).
Returns
A tuple of Tensor objects (y, y_min, y_max).
y A Tensor. Has the same type as x.
y_min A Tensor of type float32.
y_max A Tensor of type float32.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/QuantizedInstanceNorm