W3cubDocs

/TensorFlow 2.4

tf.compat.v1.keras.initializers.VarianceScaling

Initializer capable of adapting its scale to the shape of weights tensors.

With distribution="truncated_normal" or "untruncated_normal", samples are drawn from a truncated/untruncated normal distribution with a mean of zero and a standard deviation (after truncation, if used) stddev = sqrt(scale / n) where n is:

  • number of input units in the weight tensor, if mode = "fan_in"
  • number of output units, if mode = "fan_out"
  • average of the numbers of input and output units, if mode = "fan_avg"

With distribution="uniform", samples are drawn from a uniform distribution within [-limit, limit], with limit = sqrt(3 * scale / n).

Args
scale Scaling factor (positive float).
mode One of "fan_in", "fan_out", "fan_avg".
distribution Random distribution to use. One of "normal", "uniform".
seed A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seed for behavior.
dtype Default data type, used if no dtype argument is provided when calling the initializer. Only floating point types are supported.
Raises
ValueError In case of an invalid value for the "scale", mode" or "distribution" arguments.

Methods

from_config

View source

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args
config A Python dictionary. It will typically be the output of get_config.
Returns
An Initializer instance.

get_config

View source

Returns the configuration of the initializer as a JSON-serializable dict.

Returns
A JSON-serializable Python dict.

__call__

View source

Returns a tensor object initialized as specified by the initializer.

Args
shape Shape of the tensor.
dtype Optional dtype of the tensor. If not provided use the initializer dtype.
partition_info Optional information about the possible partitioning of a tensor.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/compat/v1/keras/initializers/VarianceScaling