Computes recall@k of top-k predictions with respect to sparse labels.
tf.compat.v1.metrics.recall_at_top_k( labels, predictions_idx, k=None, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None )
Differs from recall_at_k
in that predictions must be in the form of top k
class indices, whereas recall_at_k
expects logits. Refer to recall_at_k
for more details.
Args | |
---|---|
labels | int64 Tensor or SparseTensor with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and labels has shape [batch_size, num_labels]. [D1, ... DN] must match predictions . Values should be in range [0, num_classes), where num_classes is the last dimension of predictions . Values outside this range always count towards false_negative_at_<k> . |
predictions_idx | Integer Tensor with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and predictions has shape [batch size, k]. The final dimension contains the top k predicted class indices. [D1, ... DN] must match labels . |
k | Integer, k for @k metric. Only used for the default op name. |
class_id | Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of predictions . If class_id is outside this range, the method returns NAN. |
weights | Tensor whose rank is either 0, or n-1, where n is the rank of labels . If the latter, it must be broadcastable to labels (i.e., all dimensions must be either 1 , or the same as the corresponding labels dimension). |
metrics_collections | An optional list of collections that values should be added to. |
updates_collections | An optional list of collections that updates should be added to. |
name | Name of new update operation, and namespace for other dependent ops. |
Returns | |
---|---|
recall | Scalar float64 Tensor with the value of true_positives divided by the sum of true_positives and false_negatives . |
update_op | Operation that increments true_positives and false_negatives variables appropriately, and whose value matches recall . |
Raises | |
---|---|
ValueError | If weights is not None and its shape doesn't match predictions , or if either metrics_collections or updates_collections are not a list or tuple. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/compat/v1/metrics/recall_at_top_k