Computes a 2-D depthwise convolution.
tf.compat.v1.nn.depthwise_conv2d_native( input, filter, strides, padding, data_format='NHWC', dilations=[1, 1, 1, 1], name=None )
Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape [filter_height, filter_width, in_channels, channel_multiplier]
, containing in_channels
convolutional filters of depth 1, depthwise_conv2d
applies a different filter to each input channel (expanding from 1 channel to channel_multiplier
channels for each), then concatenates the results together. Thus, the output has in_channels * channel_multiplier
channels.
for k in 0..in_channels-1 for q in 0..channel_multiplier-1 output[b, i, j, k * channel_multiplier + q] = sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] * filter[di, dj, k, q]
Must have strides[0] = strides[3] = 1
. For the most common case of the same horizontal and vertices strides, strides = [1, stride, stride, 1]
.
Args | |
---|---|
input | A Tensor . Must be one of the following types: half , bfloat16 , float32 , float64 . |
filter | A Tensor . Must have the same type as input . |
strides | A list of ints . 1-D of length 4. The stride of the sliding window for each dimension of input . |
padding | Controls how to pad the image before applying the convolution. Can be the string "SAME" or "VALID" indicating the type of padding algorithm to use, or a list indicating the explicit paddings at the start and end of each dimension. When explicit padding is used and data_format is "NHWC" , this should be in the form [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]] . When explicit padding used and data_format is "NCHW" , this should be in the form [[0, 0], [0, 0], [pad_top, pad_bottom], [pad_left, pad_right]] . |
data_format | An optional string from: "NHWC", "NCHW" . Defaults to "NHWC" . Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, height, width, channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, channels, height, width]. |
dilations | An optional list of ints . Defaults to [1, 1, 1, 1] . 1-D tensor of length 4. The dilation factor for each dimension of input . If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of data_format , see above for details. Dilations in the batch and depth dimensions must be 1. |
name | A name for the operation (optional). |
Returns | |
---|---|
A Tensor . Has the same type as input . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/compat/v1/nn/depthwise_conv2d_native