Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
tf.compat.v1.nn.quantized_relu_x( features, max_value, min_features, max_features, out_type=tf.dtypes.quint8, name=None )
Args | |
---|---|
features | A Tensor . Must be one of the following types: qint8 , quint8 , qint32 , qint16 , quint16 . |
max_value | A Tensor of type float32 . |
min_features | A Tensor of type float32 . The float value that the lowest quantized value represents. |
max_features | A Tensor of type float32 . The float value that the highest quantized value represents. |
out_type | An optional tf.DType from: tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16 . Defaults to tf.quint8 . |
name | A name for the operation (optional). |
Returns | |
---|---|
A tuple of Tensor objects (activations, min_activations, max_activations). | |
activations | A Tensor of type out_type . |
min_activations | A Tensor of type float32 . |
max_activations | A Tensor of type float32 . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/compat/v1/nn/quantized_relu_x