Inserts a placeholder for a sparse tensor that will be always fed.
tf.compat.v1.sparse_placeholder( dtype, shape=None, name=None )
x = tf.compat.v1.sparse.placeholder(tf.float32) y = tf.sparse.reduce_sum(x) with tf.compat.v1.Session() as sess: print(sess.run(y)) # ERROR: will fail because x was not fed. indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64) values = np.array([1.0, 2.0], dtype=np.float32) shape = np.array([7, 9, 2], dtype=np.int64) print(sess.run(y, feed_dict={ x: tf.compat.v1.SparseTensorValue(indices, values, shape)})) # Will succeed. print(sess.run(y, feed_dict={ x: (indices, values, shape)})) # Will succeed. sp = tf.sparse.SparseTensor(indices=indices, values=values, dense_shape=shape) sp_value = sp.eval(session=sess) print(sess.run(y, feed_dict={x: sp_value})) # Will succeed.
@compatibility{eager} Placeholders are not compatible with eager execution.
Args | |
---|---|
dtype | The type of values elements in the tensor to be fed. |
shape | The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a sparse tensor of any shape. |
name | A name for prefixing the operations (optional). |
Returns | |
---|---|
A SparseTensor that may be used as a handle for feeding a value, but not evaluated directly. |
Raises | |
---|---|
RuntimeError | if eager execution is enabled |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/compat/v1/sparse_placeholder