Optimization parameters for Adam with TPU embeddings.
tf.compat.v1.tpu.experimental.AdamParameters( learning_rate: float, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08, lazy_adam: bool = True, sum_inside_sqrt: bool = True, use_gradient_accumulation: bool = True, clip_weight_min: Optional[float] = None, clip_weight_max: Optional[float] = None, weight_decay_factor: Optional[float] = None, multiply_weight_decay_factor_by_learning_rate: Optional[bool] = None, clip_gradient_min: Optional[float] = None, clip_gradient_max: Optional[float] = None )
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec
via the optimization_parameters
argument to set the optimizer and its parameters. See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator( ... embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec( ... optimization_parameters=tf.tpu.experimental.AdamParameters(0.1), ...))
Args | |
---|---|
learning_rate | a floating point value. The learning rate. |
beta1 | A float value. The exponential decay rate for the 1st moment estimates. |
beta2 | A float value. The exponential decay rate for the 2nd moment estimates. |
epsilon | A small constant for numerical stability. |
lazy_adam | Use lazy Adam instead of Adam. Lazy Adam trains faster. Please see optimization_parameters.proto for details. |
sum_inside_sqrt | This improves training speed. Please see optimization_parameters.proto for details. |
use_gradient_accumulation | setting this to False makes embedding gradients calculation less accurate but faster. Please see optimization_parameters.proto for details. for details. |
clip_weight_min | the minimum value to clip by; None means -infinity. |
clip_weight_max | the maximum value to clip by; None means +infinity. |
weight_decay_factor | amount of weight decay to apply; None means that the weights are not decayed. |
multiply_weight_decay_factor_by_learning_rate | if true, weight_decay_factor is multiplied by the current learning rate. |
clip_gradient_min | the minimum value to clip by; None means -infinity. |
clip_gradient_max | the maximum value to clip by; None means +infinity. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/compat/v1/tpu/experimental/AdamParameters