Optimization parameters for stochastic gradient descent for TPU embeddings.
tf.compat.v1.tpu.experimental.StochasticGradientDescentParameters( learning_rate: float, clip_weight_min: Optional[float] = None, clip_weight_max: Optional[float] = None, weight_decay_factor: Optional[float] = None, multiply_weight_decay_factor_by_learning_rate: Optional[bool] = None, clip_gradient_min: Optional[float] = None, clip_gradient_max: Optional[float] = None )
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec
via the optimization_parameters
argument to set the optimizer and its parameters. See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator( ... embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec( ... optimization_parameters=( tf.tpu.experimental.StochasticGradientDescentParameters(0.1))))
Args | |
---|---|
learning_rate | a floating point value. The learning rate. |
clip_weight_min | the minimum value to clip by; None means -infinity. |
clip_weight_max | the maximum value to clip by; None means +infinity. |
weight_decay_factor | amount of weight decay to apply; None means that the weights are not decayed. |
multiply_weight_decay_factor_by_learning_rate | if true, weight_decay_factor is multiplied by the current learning rate. |
clip_gradient_min | the minimum value to clip by; None means -infinity. |
clip_gradient_max | the maximum value to clip by; None means +infinity. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/compat/v1/tpu/experimental/StochasticGradientDescentParameters