Session-like object that handles initialization, recovery and hooks.
tf.compat.v1.train.MonitoredSession(
session_creator=None, hooks=None, stop_grace_period_secs=120
)
saver_hook = CheckpointSaverHook(...)
summary_hook = SummarySaverHook(...)
with MonitoredSession(session_creator=ChiefSessionCreator(...),
hooks=[saver_hook, summary_hook]) as sess:
while not sess.should_stop():
sess.run(train_op)
Initialization: At creation time the monitored session does following things in given order:
hook.begin() for each given hookscaffold.finalize()
Scaffold
hook.after_create_session()
Run: When run() is called, the monitored session does following things:
hook.before_run()
session.run() with merged fetches and feed_dicthook.after_run()
session.run() asked by userAbortedError or UnavailableError occurs, it recovers or reinitializes the session before executing the run() call againExit: At the close(), the monitored session does following things in order:
hook.end()
OutOfRange error which indicates that all inputs have been processed if the monitored_session is used as a contextHow to set tf.compat.v1.Session arguments:
MonitoredSession( session_creator=ChiefSessionCreator(master=..., config=...))
MonitoredSession( session_creator=WorkerSessionCreator(master=..., config=...))
See MonitoredTrainingSession for an example usage based on chief or worker.
Note: This is not a tf.compat.v1.Session. For example, it cannot do following:
| Args | |
|---|---|
session_creator | A factory object to create session. Typically a ChiefSessionCreator which is the default one. |
hooks | An iterable of `SessionRunHook' objects. |
| Returns | |
|---|---|
| A MonitoredSession object. |
| Attributes | |
|---|---|
graph | The graph that was launched in this session. |
closeclose()
run
run(
fetches, feed_dict=None, options=None, run_metadata=None
)
Run ops in the monitored session.
This method is completely compatible with the tf.Session.run() method.
| Args | |
|---|---|
fetches | Same as tf.Session.run(). |
feed_dict | Same as tf.Session.run(). |
options | Same as tf.Session.run(). |
run_metadata | Same as tf.Session.run(). |
| Returns | |
|---|---|
Same as tf.Session.run(). |
run_step_fn
run_step_fn(
step_fn
)
Run ops using a step function.
| Args | |
|---|---|
step_fn | A function or a method with a single argument of type StepContext. The function may use methods of the argument to perform computations with access to a raw session. The returned value of the step_fn will be returned from run_step_fn, unless a stop is requested. In that case, the next should_stop call will return True. Example usage: with tf.Graph().as_default():
c = tf.compat.v1.placeholder(dtypes.float32)
v = tf.add(c, 4.0)
w = tf.add(c, 0.5)
def step_fn(step_context):
a = step_context.session.run(fetches=v, feed_dict={c: 0.5})
if a <= 4.5:
step_context.request_stop()
return step_context.run_with_hooks(fetches=w,
feed_dict={c: 0.1})
with tf.MonitoredSession() as session:
while not session.should_stop():
a = session.run_step_fn(step_fn)
Hooks interact with the |
| Returns | |
|---|---|
Returns the returned value of step_fn. |
| Raises | |
|---|---|
StopIteration | if step_fn has called request_stop(). It may be caught by with tf.MonitoredSession() to close the session. |
ValueError | if step_fn doesn't have a single argument called step_context. It may also optionally have self for cases when it belongs to an object. |
should_stopshould_stop()
__enter____enter__()
__exit__
__exit__(
exception_type, exception_value, traceback
)
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/compat/v1/train/MonitoredSession