View source on GitHub |
Creates a Dataset
from another Dataset
and silently ignores any errors.
tf.data.experimental.ignore_errors( log_warning=False )
Use this transformation to produce a dataset that contains the same elements as the input, but silently drops any elements that caused an error. For example:
dataset = tf.data.Dataset.from_tensor_slices([1., 2., 0., 4.]) # Computing `tf.debugging.check_numerics(1. / 0.)` will raise an InvalidArgumentError. dataset = dataset.map(lambda x: tf.debugging.check_numerics(1. / x, "error")) # Using `ignore_errors()` will drop the element that causes an error. dataset = dataset.apply(tf.data.experimental.ignore_errors()) # ==> {1., 0.5, 0.2}
Args: log_warning: (Optional.) A 'tf.bool' scalar indicating whether ignored errors should be logged to stderr. Defaults to 'False'.
Returns | |
---|---|
A Dataset transformation function, which can be passed to tf.data.Dataset.apply . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/data/experimental/ignore_errors