View source on GitHub |
An estimator for TensorFlow Linear regression problems.
Inherits From: Estimator
, Estimator
tf.estimator.LinearRegressor( feature_columns, model_dir=None, label_dimension=1, weight_column=None, optimizer='Ftrl', config=None, warm_start_from=None, loss_reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, sparse_combiner='sum' )
Train a linear regression model to predict label value given observation of feature values.
categorical_column_a = categorical_column_with_hash_bucket(...) categorical_column_b = categorical_column_with_hash_bucket(...) categorical_feature_a_x_categorical_feature_b = crossed_column(...) # Estimator using the default optimizer. estimator = tf.estimator.LinearRegressor( feature_columns=[categorical_column_a, categorical_feature_a_x_categorical_feature_b]) # Or estimator using the FTRL optimizer with regularization. estimator = tf.estimator.LinearRegressor( feature_columns=[categorical_column_a, categorical_feature_a_x_categorical_feature_b], optimizer=tf.keras.optimizers.Ftrl( learning_rate=0.1, l1_regularization_strength=0.001 )) # Or estimator using an optimizer with a learning rate decay. estimator = tf.estimator.LinearRegressor( feature_columns=[categorical_column_a, categorical_feature_a_x_categorical_feature_b], optimizer=lambda: tf.keras.optimizers.Ftrl( learning_rate=tf.compat.v1.train.exponential_decay( learning_rate=0.1, global_step=tf.compat.v1.train.get_global_step(), decay_steps=10000, decay_rate=0.96)) # Or estimator with warm-starting from a previous checkpoint. estimator = tf.estimator.LinearRegressor( feature_columns=[categorical_column_a, categorical_feature_a_x_categorical_feature_b], warm_start_from="/path/to/checkpoint/dir") # Input builders def input_fn_train: # Returns tf.data.Dataset of (x, y) tuple where y represents label's class # index. pass def input_fn_eval: # Returns tf.data.Dataset of (x, y) tuple where y represents label's class # index. pass def input_fn_predict: # Returns tf.data.Dataset of (x, None) tuple. pass estimator.train(input_fn=input_fn_train) metrics = estimator.evaluate(input_fn=input_fn_eval) predictions = estimator.predict(input_fn=input_fn_predict)
Input of train
and evaluate
should have following features, otherwise there will be a KeyError:
weight_column
is not None
, a feature with key=weight_column
whose value is a Tensor
.column
in feature_columns
: column
is a SparseColumn
, a feature with key=column.name
whose value
is a SparseTensor
.column
is a WeightedSparseColumn
, two features: the first with key
the id column name, the second with key
the weight column name. Both features' value
must be a SparseTensor
.column
is a RealValuedColumn
, a feature with key=column.name
whose value
is a Tensor
.Loss is calculated by using mean squared error.
Args | |
---|---|
feature_columns | An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from FeatureColumn . |
model_dir | Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. |
label_dimension | Number of regression targets per example. This is the size of the last dimension of the labels and logits Tensor objects (typically, these have shape [batch_size, label_dimension] ). |
weight_column | A string or a NumericColumn created by tf.feature_column.numeric_column defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. If it is a string, it is used as a key to fetch weight tensor from the features . If it is a NumericColumn , raw tensor is fetched by key weight_column.key , then weight_column.normalizer_fn is applied on it to get weight tensor. |
optimizer | An instance of tf.keras.optimizers.* or tf.estimator.experimental.LinearSDCA used to train the model. Can also be a string (one of 'Adagrad', 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or callable. Defaults to FTRL optimizer. |
config | RunConfig object to configure the runtime settings. |
warm_start_from | A string filepath to a checkpoint to warm-start from, or a WarmStartSettings object to fully configure warm-starting. If the string filepath is provided instead of a WarmStartSettings , then all weights and biases are warm-started, and it is assumed that vocabularies and Tensor names are unchanged. |
loss_reduction | One of tf.losses.Reduction except NONE . Describes how to reduce training loss over batch. Defaults to SUM . |
sparse_combiner | A string specifying how to reduce if a categorical column is multivalent. One of "mean", "sqrtn", and "sum" -- these are effectively different ways to do example-level normalization, which can be useful for bag-of-words features. for more details, see tf.feature_column.linear_model . |
Estimators can be used while eager execution is enabled. Note that input_fn
and all hooks are executed inside a graph context, so they have to be written to be compatible with graph mode. Note that input_fn
code using tf.data
generally works in both graph and eager modes.
Attributes | |
---|---|
config | |
export_savedmodel | |
model_dir | |
model_fn | Returns the model_fn which is bound to self.params . |
params |
eval_dir
eval_dir( name=None )
Shows the directory name where evaluation metrics are dumped.
Args | |
---|---|
name | Name of the evaluation if user needs to run multiple evaluations on different data sets, such as on training data vs test data. Metrics for different evaluations are saved in separate folders, and appear separately in tensorboard. |
Returns | |
---|---|
A string which is the path of directory contains evaluation metrics. |
evaluate
evaluate( input_fn, steps=None, hooks=None, checkpoint_path=None, name=None )
Evaluates the model given evaluation data input_fn
.
For each step, calls input_fn
, which returns one batch of data. Evaluates until:
steps
batches are processed, orinput_fn
raises an end-of-input exception (tf.errors.OutOfRangeError
or StopIteration
).Args | |
---|---|
input_fn | A function that constructs the input data for evaluation. See Premade Estimators for more information. The function should construct and return one of the following:
|
steps | Number of steps for which to evaluate model. If None , evaluates until input_fn raises an end-of-input exception. |
hooks | List of tf.train.SessionRunHook subclass instances. Used for callbacks inside the evaluation call. |
checkpoint_path | Path of a specific checkpoint to evaluate. If None , the latest checkpoint in model_dir is used. If there are no checkpoints in model_dir , evaluation is run with newly initialized Variables instead of ones restored from checkpoint. |
name | Name of the evaluation if user needs to run multiple evaluations on different data sets, such as on training data vs test data. Metrics for different evaluations are saved in separate folders, and appear separately in tensorboard. |
Returns | |
---|---|
A dict containing the evaluation metrics specified in model_fn keyed by name, as well as an entry global_step which contains the value of the global step for which this evaluation was performed. For canned estimators, the dict contains the loss (mean loss per mini-batch) and the average_loss (mean loss per sample). Canned classifiers also return the accuracy . Canned regressors also return the label/mean and the prediction/mean . |
Raises | |
---|---|
ValueError | If steps <= 0 . |
experimental_export_all_saved_models
experimental_export_all_saved_models( export_dir_base, input_receiver_fn_map, assets_extra=None, as_text=False, checkpoint_path=None )
Exports a SavedModel
with tf.MetaGraphDefs
for each requested mode.
For each mode passed in via the input_receiver_fn_map
, this method builds a new graph by calling the input_receiver_fn
to obtain feature and label Tensor
s. Next, this method calls the Estimator
's model_fn
in the passed mode to generate the model graph based on those features and labels, and restores the given checkpoint (or, lacking that, the most recent checkpoint) into the graph. Only one of the modes is used for saving variables to the SavedModel
(order of preference: tf.estimator.ModeKeys.TRAIN
, tf.estimator.ModeKeys.EVAL
, then tf.estimator.ModeKeys.PREDICT
), such that up to three tf.MetaGraphDefs
are saved with a single set of variables in a single SavedModel
directory.
For the variables and tf.MetaGraphDefs
, a timestamped export directory below export_dir_base
, and writes a SavedModel
into it containing the tf.MetaGraphDef
for the given mode and its associated signatures.
For prediction, the exported MetaGraphDef
will provide one SignatureDef
for each element of the export_outputs
dict returned from the model_fn
, named using the same keys. One of these keys is always tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
, indicating which signature will be served when a serving request does not specify one. For each signature, the outputs are provided by the corresponding tf.estimator.export.ExportOutput
s, and the inputs are always the input receivers provided by the serving_input_receiver_fn
.
For training and evaluation, the train_op
is stored in an extra collection, and loss, metrics, and predictions are included in a SignatureDef
for the mode in question.
Extra assets may be written into the SavedModel
via the assets_extra
argument. This should be a dict, where each key gives a destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as {'my_asset_file.txt': '/path/to/my_asset_file.txt'}
.
Args | |
---|---|
export_dir_base | A string containing a directory in which to create timestamped subdirectories containing exported SavedModel s. |
input_receiver_fn_map | dict of tf.estimator.ModeKeys to input_receiver_fn mappings, where the input_receiver_fn is a function that takes no arguments and returns the appropriate subclass of InputReceiver . |
assets_extra | A dict specifying how to populate the assets.extra directory within the exported SavedModel , or None if no extra assets are needed. |
as_text | whether to write the SavedModel proto in text format. |
checkpoint_path | The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. |
Returns | |
---|---|
The path to the exported directory as a bytes object. |
Raises | |
---|---|
ValueError | if any input_receiver_fn is None , no export_outputs are provided, or no checkpoint can be found. |
export_saved_model
export_saved_model( export_dir_base, serving_input_receiver_fn, assets_extra=None, as_text=False, checkpoint_path=None, experimental_mode=ModeKeys.PREDICT )
Exports inference graph as a SavedModel
into the given dir.
For a detailed guide, see SavedModel from Estimators.
This method builds a new graph by first calling the serving_input_receiver_fn
to obtain feature Tensor
s, and then calling this Estimator
's model_fn
to generate the model graph based on those features. It restores the given checkpoint (or, lacking that, the most recent checkpoint) into this graph in a fresh session. Finally it creates a timestamped export directory below the given export_dir_base
, and writes a SavedModel
into it containing a single tf.MetaGraphDef
saved from this session.
The exported MetaGraphDef
will provide one SignatureDef
for each element of the export_outputs
dict returned from the model_fn
, named using the same keys. One of these keys is always tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
, indicating which signature will be served when a serving request does not specify one. For each signature, the outputs are provided by the corresponding tf.estimator.export.ExportOutput
s, and the inputs are always the input receivers provided by the serving_input_receiver_fn
.
Extra assets may be written into the SavedModel
via the assets_extra
argument. This should be a dict, where each key gives a destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as {'my_asset_file.txt': '/path/to/my_asset_file.txt'}
.
The experimental_mode parameter can be used to export a single train/eval/predict graph as a SavedModel
. See experimental_export_all_saved_models
for full docs.
Args | |
---|---|
export_dir_base | A string containing a directory in which to create timestamped subdirectories containing exported SavedModel s. |
serving_input_receiver_fn | A function that takes no argument and returns a tf.estimator.export.ServingInputReceiver or tf.estimator.export.TensorServingInputReceiver . |
assets_extra | A dict specifying how to populate the assets.extra directory within the exported SavedModel , or None if no extra assets are needed. |
as_text | whether to write the SavedModel proto in text format. |
checkpoint_path | The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. |
experimental_mode | tf.estimator.ModeKeys value indicating with mode will be exported. Note that this feature is experimental. |
Returns | |
---|---|
The path to the exported directory as a bytes object. |
Raises | |
---|---|
ValueError | if no serving_input_receiver_fn is provided, no export_outputs are provided, or no checkpoint can be found. |
get_variable_names
get_variable_names()
Returns list of all variable names in this model.
Returns | |
---|---|
List of names. |
Raises | |
---|---|
ValueError | If the Estimator has not produced a checkpoint yet. |
get_variable_value
get_variable_value( name )
Returns value of the variable given by name.
Args | |
---|---|
name | string or a list of string, name of the tensor. |
Returns | |
---|---|
Numpy array - value of the tensor. |
Raises | |
---|---|
ValueError | If the Estimator has not produced a checkpoint yet. |
latest_checkpoint
latest_checkpoint()
Finds the filename of the latest saved checkpoint file in model_dir
.
Returns | |
---|---|
The full path to the latest checkpoint or None if no checkpoint was found. |
predict
predict( input_fn, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True )
Yields predictions for given features.
Please note that interleaving two predict outputs does not work. See: issue/20506
Args | |
---|---|
input_fn | A function that constructs the features. Prediction continues until input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIteration ). See Premade Estimators for more information. The function should construct and return one of the following:
|
predict_keys | list of str , name of the keys to predict. It is used if the tf.estimator.EstimatorSpec.predictions is a dict . If predict_keys is used then rest of the predictions will be filtered from the dictionary. If None , returns all. |
hooks | List of tf.train.SessionRunHook subclass instances. Used for callbacks inside the prediction call. |
checkpoint_path | Path of a specific checkpoint to predict. If None , the latest checkpoint in model_dir is used. If there are no checkpoints in model_dir , prediction is run with newly initialized Variables instead of ones restored from checkpoint. |
yield_single_examples | If False , yields the whole batch as returned by the model_fn instead of decomposing the batch into individual elements. This is useful if model_fn returns some tensors whose first dimension is not equal to the batch size. |
Yields | |
---|---|
Evaluated values of predictions tensors. |
Raises | |
---|---|
ValueError | If batch length of predictions is not the same and yield_single_examples is True . |
ValueError | If there is a conflict between predict_keys and predictions . For example if predict_keys is not None but tf.estimator.EstimatorSpec.predictions is not a dict . |
train
train( input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None )
Trains a model given training data input_fn
.
Args | |
---|---|
input_fn | A function that provides input data for training as minibatches. See Premade Estimators for more information. The function should construct and return one of the following:
|
hooks | List of tf.train.SessionRunHook subclass instances. Used for callbacks inside the training loop. |
steps | Number of steps for which to train the model. If None , train forever or train until input_fn generates the tf.errors.OutOfRange error or StopIteration exception. steps works incrementally. If you call two times train(steps=10) then training occurs in total 20 steps. If OutOfRange or StopIteration occurs in the middle, training stops before 20 steps. If you don't want to have incremental behavior please set max_steps instead. If set, max_steps must be None . |
max_steps | Number of total steps for which to train model. If None , train forever or train until input_fn generates the tf.errors.OutOfRange error or StopIteration exception. If set, steps must be None . If OutOfRange or StopIteration occurs in the middle, training stops before max_steps steps. Two calls to train(steps=100) means 200 training iterations. On the other hand, two calls to train(max_steps=100) means that the second call will not do any iteration since first call did all 100 steps. |
saving_listeners | list of CheckpointSaverListener objects. Used for callbacks that run immediately before or after checkpoint savings. |
Returns | |
---|---|
self , for chaining. |
Raises | |
---|---|
ValueError | If both steps and max_steps are not None . |
ValueError | If either steps or max_steps <= 0 . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/estimator/LinearRegressor