View source on GitHub |
Creates a Head
for multi-objective learning.
Inherits From: Head
tf.estimator.MultiHead( heads, head_weights=None )
This class merges the output of multiple Head
objects. Specifically:
train_op_fn
with this final loss.head.name
suffix to the keys in eval metrics, such as precision/head1.name
, precision/head2.name
.(head.name, prediction_key)
. Merges export_outputs
such that by default the first head is served.head1 = tf.estimator.MultiLabelHead(n_classes=2, name='head1') head2 = tf.estimator.MultiLabelHead(n_classes=3, name='head2') multi_head = tf.estimator.MultiHead([head1, head2]) logits = { 'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32), 'head2': np.array([[20., -20., 20.], [-30., 20., -20.]], dtype=np.float32),} labels = { 'head1': np.array([[1, 0], [1, 1]], dtype=np.int64), 'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),} features = {'x': np.array(((42,),), dtype=np.float32)} # For large logits, sigmoid cross entropy loss is approximated as: # loss = labels * (logits < 0) * (-logits) + # (1 - labels) * (logits > 0) * logits => # head1: expected_unweighted_loss = [[10., 10.], [15., 0.]] # loss1 = ((10 + 10) / 2 + (15 + 0) / 2) / 2 = 8.75 # head2: expected_unweighted_loss = [[20., 20., 20.], [30., 0., 0]] # loss2 = ((20 + 20 + 20) / 3 + (30 + 0 + 0) / 3) / 2 = 15.00 # loss = loss1 + loss2 = 8.75 + 15.00 = 23.75 loss = multi_head.loss(labels, logits, features=features) print('{:.2f}'.format(loss.numpy())) 23.75 eval_metrics = multi_head.metrics() updated_metrics = multi_head.update_metrics( eval_metrics, features, logits, labels) for k in sorted(updated_metrics): print('{} : {:.2f}'.format(k, updated_metrics[k].result().numpy())) auc/head1 : 0.17 auc/head2 : 0.33 auc_precision_recall/head1 : 0.60 auc_precision_recall/head2 : 0.40 average_loss/head1 : 8.75 average_loss/head2 : 15.00 loss/head1 : 8.75 loss/head2 : 15.00 preds = multi_head.predictions(logits) print(preds[('head1', 'logits')]) tf.Tensor( [[-10. 10.] [-15. 10.]], shape=(2, 2), dtype=float32)
Usage with a canned estimator:
# In `input_fn`, specify labels as a dict keyed by head name: def input_fn(): features = ... labels1 = ... labels2 = ... return features, {'head1.name': labels1, 'head2.name': labels2} # In `model_fn`, specify logits as a dict keyed by head name: def model_fn(features, labels, mode): # Create simple heads and specify head name. head1 = tf.estimator.MultiClassHead(n_classes=3, name='head1') head2 = tf.estimator.BinaryClassHead(name='head2') # Create MultiHead from two simple heads. head = tf.estimator.MultiHead([head1, head2]) # Create logits for each head, and combine them into a dict. logits1, logits2 = logit_fn() logits = {'head1.name': logits1, 'head2.name': logits2} # Return the merged EstimatorSpec return head.create_estimator_spec(..., logits=logits, ...) # Create an estimator with this model_fn. estimator = tf.estimator.Estimator(model_fn=model_fn) estimator.train(input_fn=input_fn)
Also supports logits
as a Tensor
of shape [D0, D1, ... DN, logits_dimension]
. It will split the Tensor
along the last dimension and distribute it appropriately among the heads. E.g.:
# Input logits. logits = np.array([[-1., 1., 2., -2., 2.], [-1.5, 1., -3., 2., -2.]], dtype=np.float32) # Suppose head1 and head2 have the following logits dimension. head1.logits_dimension = 2 head2.logits_dimension = 3 # After splitting, the result will be: logits_dict = {'head1_name': [[-1., 1.], [-1.5, 1.]], 'head2_name': [[2., -2., 2.], [-3., 2., -2.]]}
def model_fn(features, labels, mode): # Create simple heads and specify head name. head1 = tf.estimator.MultiClassHead(n_classes=3, name='head1') head2 = tf.estimator.BinaryClassHead(name='head2') # Create multi-head from two simple heads. head = tf.estimator.MultiHead([head1, head2]) # Create logits for the multihead. The result of logits is a `Tensor`. logits = logit_fn(logits_dimension=head.logits_dimension) # Return the merged EstimatorSpec return head.create_estimator_spec(..., logits=logits, ...)
Args | |
---|---|
heads | List or tuple of Head instances. All heads must have name specified. The first head in the list is the default used at serving time. |
head_weights | Optional list of weights, same length as heads . Used when merging losses to calculate the weighted sum of losses from each head. If None , all losses are weighted equally. |
Attributes | |
---|---|
logits_dimension | See base_head.Head for details. |
loss_reduction | See base_head.Head for details. |
name | See base_head.Head for details. |
create_estimator_spec
create_estimator_spec( features, mode, logits, labels=None, optimizer=None, trainable_variables=None, train_op_fn=None, update_ops=None, regularization_losses=None )
Returns a model_fn.EstimatorSpec
.
Args | |
---|---|
features | Input dict of Tensor or SparseTensor objects. |
mode | Estimator's ModeKeys . |
logits | Input dict keyed by head name, or logits Tensor with shape [D0, D1, ... DN, logits_dimension] . For many applications, the Tensor shape is [batch_size, logits_dimension] . If logits is a Tensor , it will split the Tensor along the last dimension and distribute it appropriately among the heads. Check MultiHead for examples. |
labels | Input dict keyed by head name. For each head, the label value can be integer or string Tensor with shape matching its corresponding logits .labels is a required argument when mode equals TRAIN or EVAL . |
optimizer | An tf.keras.optimizers.Optimizer instance to optimize the loss in TRAIN mode. Namely, sets train_op = optimizer.get_updates(loss, trainable_variables) , which updates variables to minimize loss . |
trainable_variables | A list or tuple of Variable objects to update to minimize loss . In Tensorflow 1.x, by default these are the list of variables collected in the graph under the key GraphKeys.TRAINABLE_VARIABLES . As Tensorflow 2.x doesn't have collections and GraphKeys, trainable_variables need to be passed explicitly here. |
train_op_fn | Function that takes a scalar loss Tensor and returns train_op . Used if optimizer is None . |
update_ops | A list or tuple of update ops to be run at training time. For example, layers such as BatchNormalization create mean and variance update ops that need to be run at training time. In Tensorflow 1.x, these are thrown into an UPDATE_OPS collection. As Tensorflow 2.x doesn't have collections, update_ops need to be passed explicitly here. |
regularization_losses | A list of additional scalar losses to be added to the training loss, such as regularization losses. These losses are usually expressed as a batch average, so for best results, in each head, users need to use the default loss_reduction=SUM_OVER_BATCH_SIZE to avoid scaling errors. Compared to the regularization losses for each head, this loss is to regularize the merged loss of all heads in multi head, and will be added to the overall training loss of multi head. |
Returns | |
---|---|
A model_fn.EstimatorSpec instance. |
Raises | |
---|---|
ValueError | If both train_op_fn and optimizer are None in TRAIN mode, or if both are set. If mode is not in Estimator's ModeKeys . |
loss
loss( labels, logits, features=None, mode=None, regularization_losses=None )
Returns regularized training loss. See base_head.Head
for details.
metrics
metrics( regularization_losses=None )
Creates metrics. See base_head.Head
for details.
predictions
predictions( logits, keys=None )
Create predictions. See base_head.Head
for details.
update_metrics
update_metrics( eval_metrics, features, logits, labels, regularization_losses=None )
Updates eval metrics. See base_head.Head
for details.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/estimator/MultiHead