Vocabulary information for warm-starting.
tf.estimator.VocabInfo( new_vocab, new_vocab_size, num_oov_buckets, old_vocab, old_vocab_size=-1, backup_initializer=None, axis=0 )
See tf.estimator.WarmStartSettings
for examples of using VocabInfo to warm-start.
Args: new_vocab: [Required] A path to the new vocabulary file (used with the model to be trained). new_vocab_size: [Required] An integer indicating how many entries of the new vocabulary will used in training. num_oov_buckets: [Required] An integer indicating how many OOV buckets are associated with the vocabulary. old_vocab: [Required] A path to the old vocabulary file (used with the checkpoint to be warm-started from). old_vocab_size: [Optional] An integer indicating how many entries of the old vocabulary were used in the creation of the checkpoint. If not provided, the entire old vocabulary will be used. backup_initializer: [Optional] A variable initializer used for variables corresponding to new vocabulary entries and OOV. If not provided, these entries will be zero-initialized. axis: [Optional] Denotes what axis the vocabulary corresponds to. The default, 0, corresponds to the most common use case (embeddings or linear weights for binary classification / regression). An axis of 1 could be used for warm-starting output layers with class vocabularies.
Returns: A VocabInfo
which represents the vocabulary information for warm-starting.
Raises: ValueError: axis
is neither 0 or 1.
Example Usage:
embeddings_vocab_info = tf.VocabInfo( new_vocab='embeddings_vocab', new_vocab_size=100, num_oov_buckets=1, old_vocab='pretrained_embeddings_vocab', old_vocab_size=10000, backup_initializer=tf.compat.v1.truncated_normal_initializer( mean=0.0, stddev=(1 / math.sqrt(embedding_dim))), axis=0) softmax_output_layer_kernel_vocab_info = tf.VocabInfo( new_vocab='class_vocab', new_vocab_size=5, num_oov_buckets=0, # No OOV for classes. old_vocab='old_class_vocab', old_vocab_size=8, backup_initializer=tf.compat.v1.glorot_uniform_initializer(), axis=1) softmax_output_layer_bias_vocab_info = tf.VocabInfo( new_vocab='class_vocab', new_vocab_size=5, num_oov_buckets=0, # No OOV for classes. old_vocab='old_class_vocab', old_vocab_size=8, backup_initializer=tf.compat.v1.zeros_initializer(), axis=0) #Currently, only axis=0 and axis=1 are supported. ``` <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2"><h2 class="add-link">Attributes</h2></th></tr> <tr> <td> `new_vocab` </td> <td> </td> </tr><tr> <td> `new_vocab_size` </td> <td> </td> </tr><tr> <td> `num_oov_buckets` </td> <td> </td> </tr><tr> <td> `old_vocab` </td> <td> </td> </tr><tr> <td> `old_vocab_size` </td> <td> </td> </tr><tr> <td> `backup_initializer` </td> <td> </td> </tr><tr> <td> `axis` </td> <td> </td> </tr> </table>
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/estimator/VocabInfo