View source on GitHub |
Applies weight values to a CategoricalColumn
.
tf.feature_column.weighted_categorical_column( categorical_column, weight_feature_key, dtype=tf.dtypes.float32 )
Use this when each of your sparse inputs has both an ID and a value. For example, if you're representing text documents as a collection of word frequencies, you can provide 2 parallel sparse input features ('terms' and 'frequencies' below).
Input tf.Example
objects:
[ features { feature { key: "terms" value {bytes_list {value: "very" value: "model"} } } feature { key: "frequencies" value {float_list {value: 0.3 value: 0.1} } } }, features { feature { key: "terms" value {bytes_list {value: "when" value: "course" value: "human"} } } feature { key: "frequencies" value {float_list {value: 0.4 value: 0.1 value: 0.2} } } } ]
categorical_column = categorical_column_with_hash_bucket( column_name='terms', hash_bucket_size=1000) weighted_column = weighted_categorical_column( categorical_column=categorical_column, weight_feature_key='frequencies') columns = [weighted_column, ...] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns)
This assumes the input dictionary contains a SparseTensor
for key 'terms', and a SparseTensor
for key 'frequencies'. These 2 tensors must have the same indices and dense shape.
Args | |
---|---|
categorical_column | A CategoricalColumn created by categorical_column_with_* functions. |
weight_feature_key | String key for weight values. |
dtype | Type of weights, such as tf.float32 . Only float and integer weights are supported. |
Returns | |
---|---|
A CategoricalColumn composed of two sparse features: one represents id, the other represents weight (value) of the id feature in that example. |
Raises | |
---|---|
ValueError | if dtype is not convertible to float. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/feature_column/weighted_categorical_column