Category crossing layer.
Inherits From: PreprocessingLayer
, Layer
, Module
tf.keras.layers.experimental.preprocessing.CategoryCrossing( depth=None, name=None, separator=None, **kwargs )
This layer concatenates multiple categorical inputs into a single categorical output (similar to Cartesian product). The output dtype is string.
inp_1 = ['a', 'b', 'c'] inp_2 = ['d', 'e', 'f'] layer = tf.keras.layers.experimental.preprocessing.CategoryCrossing() layer([inp_1, inp_2]) <tf.Tensor: shape=(3, 1), dtype=string, numpy= array([[b'a_X_d'], [b'b_X_e'], [b'c_X_f']], dtype=object)>
inp_1 = ['a', 'b', 'c'] inp_2 = ['d', 'e', 'f'] layer = tf.keras.layers.experimental.preprocessing.CategoryCrossing( separator='-') layer([inp_1, inp_2]) <tf.Tensor: shape=(3, 1), dtype=string, numpy= array([[b'a-d'], [b'b-e'], [b'c-f']], dtype=object)>
Arguments | |
---|---|
depth | depth of input crossing. By default None, all inputs are crossed into one output. It can also be an int or tuple/list of ints. Passing an integer will create combinations of crossed outputs with depth up to that integer, i.e., [1, 2, ..., depth ), and passing a tuple of integers will create crossed outputs with depth for the specified values in the tuple, i.e., depth =(N1, N2) will create all possible crossed outputs with depth equal to N1 or N2. Passing None means a single crossed output with all inputs. For example, with inputs a , b and c , depth=2 means the output will be [a;b;c;cross(a, b);cross(bc);cross(ca)]. |
separator | A string added between each input being joined. Defaults to 'X'. |
name | Name to give to the layer. |
**kwargs | Keyword arguments to construct a layer. |
Input shape: a list of string or int tensors or sparse tensors of shape [batch_size, d1, ..., dm]
Output shape: a single string or int tensor or sparse tensor of shape [batch_size, d1, ..., dm]
Returns | |
---|---|
If any input is RaggedTensor , the output is RaggedTensor . Else, if any input is SparseTensor , the output is SparseTensor . Otherwise, the output is Tensor . |
Example: (depth
=None) If the layer receives three inputs: a=[[1], [4]]
, b=[[2], [5]]
, c=[[3], [6]]
the output will be a string tensor: [[b'1_X_2_X_3'], [b'4_X_5_X_6']]
Example: (depth
is an integer) With the same input above, and if depth
=2, the output will be a list of 6 string tensors: [[b'1'], [b'4']]
[[b'2'], [b'5']]
[[b'3'], [b'6']]
[[b'1_X_2'], [b'4_X_5']]
, [[b'2_X_3'], [b'5_X_6']]
, [[b'3_X_1'], [b'6_X_4']]
Example: (depth
is a tuple/list of integers) With the same input above, and if depth
=(2, 3) the output will be a list of 4 string tensors: [[b'1_X_2'], [b'4_X_5']]
, [[b'2_X_3'], [b'5_X_6']]
, [[b'3_X_1'], [b'6_X_4']]
, [[b'1_X_2_X_3'], [b'4_X_5_X_6']]
adapt
adapt( data, reset_state=True )
Fits the state of the preprocessing layer to the data being passed.
Arguments | |
---|---|
data | The data to train on. It can be passed either as a tf.data Dataset, or as a numpy array. |
reset_state | Optional argument specifying whether to clear the state of the layer at the start of the call to adapt , or whether to start from the existing state. This argument may not be relevant to all preprocessing layers: a subclass of PreprocessingLayer may choose to throw if 'reset_state' is set to False. |
partial_crossing
partial_crossing( partial_inputs, ragged_out, sparse_out )
Gets the crossed output from a partial list/tuple of inputs.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/experimental/preprocessing/CategoryCrossing