Buckets data into discrete ranges.
Inherits From: PreprocessingLayer
, Layer
, Module
tf.keras.layers.experimental.preprocessing.Discretization( bins, **kwargs )
This layer will place each element of its input data into one of several contiguous ranges and output an integer index indicating which range each element was placed in.
Any tf.Tensor
or tf.RaggedTensor
of dimension 2 or higher.
Same as input shape.
Bucketize float values based on provided buckets.
>>> input = np.array([[-1.5, 1.0, 3.4, .5], [0.0, 3.0, 1.3, 0.0]]) >>> layer = tf.keras.layers.experimental.preprocessing.Discretization( ... bins=[0., 1., 2.]) >>> layer(input) <tf.Tensor: shape=(2, 4), dtype=int32, numpy= array([[0, 1, 3, 1], [0, 3, 2, 0]], dtype=int32)>
Attributes | |
---|---|
bins | Optional boundary specification. Bins exclude the left boundary and include the right boundary, so bins=[0., 1., 2.] generates bins (-inf, 0.) , [0., 1.) , [1., 2.) , and [2., +inf) . |
adapt
adapt( data, reset_state=True )
Fits the state of the preprocessing layer to the data being passed.
Arguments | |
---|---|
data | The data to train on. It can be passed either as a tf.data Dataset, or as a numpy array. |
reset_state | Optional argument specifying whether to clear the state of the layer at the start of the call to adapt , or whether to start from the existing state. This argument may not be relevant to all preprocessing layers: a subclass of PreprocessingLayer may choose to throw if 'reset_state' is set to False. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/experimental/preprocessing/Discretization