View source on GitHub |
Max pooling operation for 2D spatial data.
tf.keras.layers.MaxPool2D( pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs )
Downsamples the input representation by taking the maximum value over the window defined by pool_size
for each dimension along the features axis. The window is shifted by strides
in each dimension. The resulting output when using "valid" padding option has a shape(number of rows or columns) of: output_shape = (input_shape - pool_size + 1) / strides)
The resulting output shape when using the "same" padding option is: output_shape = input_shape / strides
For example, for stride=(1,1) and padding="valid":
x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) x = tf.reshape(x, [1, 3, 3, 1]) max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='valid') max_pool_2d(x) <tf.Tensor: shape=(1, 2, 2, 1), dtype=float32, numpy= array([[[[5.], [6.]], [[8.], [9.]]]], dtype=float32)>
For example, for stride=(2,2) and padding="valid":
x = tf.constant([[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]]) x = tf.reshape(x, [1, 3, 4, 1]) max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='valid') max_pool_2d(x) <tf.Tensor: shape=(1, 2, 3, 1), dtype=float32, numpy= array([[[[ 6.], [ 7.], [ 8.]], [[10.], [11.], [12.]]]], dtype=float32)>
input_image = tf.constant([[[[1.], [1.], [2.], [4.]], [[2.], [2.], [3.], [2.]], [[4.], [1.], [1.], [1.]], [[2.], [2.], [1.], [4.]]]]) output = tf.constant([[[[1], [0]], [[0], [1]]]]) model = tf.keras.models.Sequential() model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), input_shape=(4,4,1))) model.compile('adam', 'mean_squared_error') model.predict(input_image, steps=1) array([[[[2.], [4.]], [[4.], [4.]]]], dtype=float32)
For example, for stride=(1,1) and padding="same":
x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) x = tf.reshape(x, [1, 3, 3, 1]) max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same') max_pool_2d(x) <tf.Tensor: shape=(1, 3, 3, 1), dtype=float32, numpy= array([[[[5.], [6.], [6.]], [[8.], [9.], [9.]], [[8.], [9.], [9.]]]], dtype=float32)>
Arguments | |
---|---|
pool_size | integer or tuple of 2 integers, window size over which to take the maximum. (2, 2) will take the max value over a 2x2 pooling window. If only one integer is specified, the same window length will be used for both dimensions. |
strides | Integer, tuple of 2 integers, or None. Strides values. Specifies how far the pooling window moves for each pooling step. If None, it will default to pool_size . |
padding | One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. |
data_format | A string, one of channels_last (default) or channels_first . The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width) . It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json . If you never set it, then it will be "channels_last". |
data_format='channels_last'
: 4D tensor with shape (batch_size, rows, cols, channels)
.data_format='channels_first'
: 4D tensor with shape (batch_size, channels, rows, cols)
.data_format='channels_last'
: 4D tensor with shape (batch_size, pooled_rows, pooled_cols, channels)
.data_format='channels_first'
: 4D tensor with shape (batch_size, channels, pooled_rows, pooled_cols)
.Returns | |
---|---|
A tensor of rank 4 representing the maximum pooled values. See above for output shape. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/MaxPool2D