View source on GitHub |
Rectified Linear Unit activation function.
tf.keras.layers.ReLU( max_value=None, negative_slope=0, threshold=0, **kwargs )
With default values, it returns element-wise max(x, 0)
.
Otherwise, it follows:
f(x) = max_value if x >= max_value f(x) = x if threshold <= x < max_value f(x) = negative_slope * (x - threshold) otherwise
layer = tf.keras.layers.ReLU() output = layer([-3.0, -1.0, 0.0, 2.0]) list(output.numpy()) [0.0, 0.0, 0.0, 2.0] layer = tf.keras.layers.ReLU(max_value=1.0) output = layer([-3.0, -1.0, 0.0, 2.0]) list(output.numpy()) [0.0, 0.0, 0.0, 1.0] layer = tf.keras.layers.ReLU(negative_slope=1.0) output = layer([-3.0, -1.0, 0.0, 2.0]) list(output.numpy()) [-3.0, -1.0, 0.0, 2.0] layer = tf.keras.layers.ReLU(threshold=1.5) output = layer([-3.0, -1.0, 1.0, 2.0]) list(output.numpy()) [0.0, 0.0, 0.0, 2.0]
Arbitrary. Use the keyword argument input_shape
(tuple of integers, does not include the batch axis) when using this layer as the first layer in a model.
Same shape as the input.
Arguments | |
---|---|
max_value | Float >= 0. Maximum activation value. Default to None, which means unlimited. |
negative_slope | Float >= 0. Negative slope coefficient. Default to 0. |
threshold | Float. Threshold value for thresholded activation. Default to 0. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/ReLU