View source on GitHub |
Depthwise separable 2D convolution.
tf.keras.layers.SeparableConv2D( filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', pointwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, **kwargs )
Separable convolutions consist of first performing a depthwise spatial convolution (which acts on each input channel separately) followed by a pointwise convolution which mixes the resulting output channels. The depth_multiplier
argument controls how many output channels are generated per input channel in the depthwise step.
Intuitively, separable convolutions can be understood as a way to factorize a convolution kernel into two smaller kernels, or as an extreme version of an Inception block.
Arguments | |
---|---|
filters | Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). |
kernel_size | An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. |
strides | An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1. |
padding | one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. |
data_format | A string, one of channels_last (default) or channels_first . The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width) . It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json . If you never set it, then it will be "channels_last". |
dilation_rate | An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any strides value != 1. |
depth_multiplier | The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to filters_in * depth_multiplier . |
activation | Activation function to use. If you don't specify anything, no activation is applied ( see keras.activations ). |
use_bias | Boolean, whether the layer uses a bias vector. |
depthwise_initializer | Initializer for the depthwise kernel matrix ( see keras.initializers ). |
pointwise_initializer | Initializer for the pointwise kernel matrix ( see keras.initializers ). |
bias_initializer | Initializer for the bias vector ( see keras.initializers ). |
depthwise_regularizer | Regularizer function applied to the depthwise kernel matrix (see keras.regularizers ). |
pointwise_regularizer | Regularizer function applied to the pointwise kernel matrix (see keras.regularizers ). |
bias_regularizer | Regularizer function applied to the bias vector ( see keras.regularizers ). |
activity_regularizer | Regularizer function applied to the output of the layer (its "activation") ( see keras.regularizers ). |
depthwise_constraint | Constraint function applied to the depthwise kernel matrix ( see keras.constraints ). |
pointwise_constraint | Constraint function applied to the pointwise kernel matrix ( see keras.constraints ). |
bias_constraint | Constraint function applied to the bias vector ( see keras.constraints ). |
4D tensor with shape: (batch_size, channels, rows, cols)
if data_format='channels_first' or 4D tensor with shape: (batch_size, rows, cols, channels)
if data_format='channels_last'.
4D tensor with shape: (batch_size, filters, new_rows, new_cols)
if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters)
if data_format='channels_last'. rows
and cols
values might have changed due to padding.
Returns | |
---|---|
A tensor of rank 4 representing activation(separableconv2d(inputs, kernel) + bias) . |
Raises | |
---|---|
ValueError | if padding is "causal". |
ValueError | when both strides > 1 and dilation_rate > 1. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/SeparableConv2D