/TensorFlow 2.4

# tf.keras.losses.Hinge

Computes the hinge loss between `y_true` and `y_pred`.

Inherits From: `Loss`

`loss = maximum(1 - y_true * y_pred, 0)`

`y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.

#### Standalone usage:

```y_true = [[0., 1.], [0., 0.]]
y_pred = [[0.6, 0.4], [0.4, 0.6]]
# Using 'auto'/'sum_over_batch_size' reduction type.
h = tf.keras.losses.Hinge()
h(y_true, y_pred).numpy()
1.3
```
```# Calling with 'sample_weight'.
h(y_true, y_pred, sample_weight=[1, 0]).numpy()
0.55
```
```# Using 'sum' reduction type.
h = tf.keras.losses.Hinge(
reduction=tf.keras.losses.Reduction.SUM)
h(y_true, y_pred).numpy()
2.6
```
```# Using 'none' reduction type.
h = tf.keras.losses.Hinge(
reduction=tf.keras.losses.Reduction.NONE)
h(y_true, y_pred).numpy()
array([1.1, 1.5], dtype=float32)
```

Usage with the `compile()` API:

```model.compile(optimizer='sgd', loss=tf.keras.losses.Hinge())
```
Args
`reduction` (Optional) Type of `tf.keras.losses.Reduction` to apply to loss. Default value is `AUTO`. `AUTO` indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`. When used with `tf.distribute.Strategy`, outside of built-in training loops such as `tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE` will raise an error. Please see this custom training tutorial for more details.
`name` Optional name for the op. Defaults to 'hinge'.

## Methods

### `from_config`

View source

Instantiates a `Loss` from its config (output of `get_config()`).

Args
`config` Output of `get_config()`.
Returns
A `Loss` instance.

### `get_config`

View source

Returns the config dictionary for a `Loss` instance.

### `__call__`

View source

Invokes the `Loss` instance.

Args
`y_true` Ground truth values. shape = `[batch_size, d0, .. dN]`, except sparse loss functions such as sparse categorical crossentropy where shape = `[batch_size, d0, .. dN-1]`
`y_pred` The predicted values. shape = `[batch_size, d0, .. dN]`
`sample_weight` Optional `sample_weight` acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If `sample_weight` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `sample_weight` vector. If the shape of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted to this shape), then each loss element of `y_pred` is scaled by the corresponding value of `sample_weight`. (Note on`dN-1`: all loss functions reduce by 1 dimension, usually axis=-1.)
Returns
Weighted loss float `Tensor`. If `reduction` is `NONE`, this has shape `[batch_size, d0, .. dN-1]`; otherwise, it is scalar. (Note `dN-1` because all loss functions reduce by 1 dimension, usually axis=-1.)
Raises
`ValueError` If the shape of `sample_weight` is invalid.