View source on GitHub |
Computes the mean absolute error between labels and predictions.
tf.keras.losses.MAE( y_true, y_pred )
loss = mean(abs(y_true - y_pred), axis=-1)
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_absolute_error(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( loss.numpy(), np.mean(np.abs(y_true - y_pred), axis=-1))
Args | |
---|---|
y_true | Ground truth values. shape = [batch_size, d0, .. dN] . |
y_pred | The predicted values. shape = [batch_size, d0, .. dN] . |
Returns | |
---|---|
Mean absolute error values. shape = [batch_size, d0, .. dN-1] . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/losses/MAE