View source on GitHub |
Computes the mean absolute percentage error between y_true
and y_pred
.
tf.keras.losses.MAPE( y_true, y_pred )
loss = 100 * mean(abs((y_true - y_pred) / y_true), axis=-1)
y_true = np.random.random(size=(2, 3)) y_true = np.maximum(y_true, 1e-7) # Prevent division by zero y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_absolute_percentage_error(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( loss.numpy(), 100. * np.mean(np.abs((y_true - y_pred) / y_true), axis=-1))
Args | |
---|---|
y_true | Ground truth values. shape = [batch_size, d0, .. dN] . |
y_pred | The predicted values. shape = [batch_size, d0, .. dN] . |
Returns | |
---|---|
Mean absolute percentage error values. shape = [batch_size, d0, .. dN-1] . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/losses/MAPE