| View source on GitHub |
Computes root mean squared error metric between y_true and y_pred.
Inherits From: Mean, Metric, Layer, Module
tf.keras.metrics.RootMeanSquaredError(
name='root_mean_squared_error', dtype=None
)
m = tf.keras.metrics.RootMeanSquaredError() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) m.result().numpy() 0.5
m.reset_states()
m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]],
sample_weight=[1, 0])
m.result().numpy()
0.70710677
Usage with compile() API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.RootMeanSquaredError()])
reset_statesreset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
resultresult()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_state
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates root mean squared error statistics.
| Args | |
|---|---|
y_true | The ground truth values. |
y_pred | The predicted values. |
sample_weight | Optional weighting of each example. Defaults to 1. Can be a Tensor whose rank is either 0, or the same rank as y_true, and must be broadcastable to y_true. |
| Returns | |
|---|---|
| Update op. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/metrics/RootMeanSquaredError