View source on GitHub |
A LearningRateSchedule that uses an exponential decay schedule.
Inherits From: LearningRateSchedule
tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate, decay_steps, decay_rate, staircase=False, name=None )
When training a model, it is often recommended to lower the learning rate as the training progresses. This schedule applies an exponential decay function to an optimizer step, given a provided initial learning rate.
The schedule a 1-arg callable that produces a decayed learning rate when passed the current optimizer step. This can be useful for changing the learning rate value across different invocations of optimizer functions. It is computed as:
def decayed_learning_rate(step): return initial_learning_rate * decay_rate ^ (step / decay_steps)
If the argument staircase
is True
, then step / decay_steps
is an integer division and the decayed learning rate follows a staircase function.
You can pass this schedule directly into a tf.keras.optimizers.Optimizer
as the learning rate. Example: When fitting a Keras model, decay every 100000 steps with a base of 0.96:
initial_learning_rate = 0.1 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate, decay_steps=100000, decay_rate=0.96, staircase=True) model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=lr_schedule), loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(data, labels, epochs=5)
The learning rate schedule is also serializable and deserializable using tf.keras.optimizers.schedules.serialize
and tf.keras.optimizers.schedules.deserialize
.
Returns | |
---|---|
A 1-arg callable learning rate schedule that takes the current optimizer step and outputs the decayed learning rate, a scalar Tensor of the same type as initial_learning_rate . |
Args | |
---|---|
initial_learning_rate | A scalar float32 or float64 Tensor or a Python number. The initial learning rate. |
decay_steps | A scalar int32 or int64 Tensor or a Python number. Must be positive. See the decay computation above. |
decay_rate | A scalar float32 or float64 Tensor or a Python number. The decay rate. |
staircase | Boolean. If True decay the learning rate at discrete intervals |
name | String. Optional name of the operation. Defaults to 'ExponentialDecay'. |
from_config
@classmethod from_config( config )
Instantiates a LearningRateSchedule
from its config.
Args | |
---|---|
config | Output of get_config() . |
Returns | |
---|---|
A LearningRateSchedule instance. |
get_config
get_config()
__call__
__call__( step )
Call self as a function.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/optimizers/schedules/ExponentialDecay