View source on GitHub |
Gradient descent (with momentum) optimizer.
Inherits From: Optimizer
tf.keras.optimizers.SGD( learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD', **kwargs )
Update rule for parameter w
with gradient g
when momentum
is 0:
w = w - learning_rate * g
Update rule when momentum
is larger than 0:
velocity = momentum * velocity - learning_rate * g w = w + velocity
When nesterov=True
, this rule becomes:
velocity = momentum * velocity - learning_rate * g w = w + momentum * velocity - learning_rate * g
Args | |
---|---|
learning_rate | A Tensor , floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule , or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to 0.01. |
momentum | float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations. Defaults to 0, i.e., vanilla gradient descent. |
nesterov | boolean. Whether to apply Nesterov momentum. Defaults to False . |
name | Optional name prefix for the operations created when applying gradients. Defaults to "SGD" . |
**kwargs | Keyword arguments. Allowed to be one of "clipnorm" or "clipvalue" . "clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips gradients by value. |
opt = tf.keras.optimizers.SGD(learning_rate=0.1) var = tf.Variable(1.0) loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1 step_count = opt.minimize(loss, [var]).numpy() # Step is `- learning_rate * grad` var.numpy() 0.9
opt = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9) var = tf.Variable(1.0) val0 = var.value() loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1 # First step is `- learning_rate * grad` step_count = opt.minimize(loss, [var]).numpy() val1 = var.value() (val0 - val1).numpy() 0.1 # On later steps, step-size increases because of momentum step_count = opt.minimize(loss, [var]).numpy() val2 = var.value() (val1 - val2).numpy() 0.18
nesterov=True
, See Sutskever et al., 2013.Raises | |
---|---|
ValueError | in case of any invalid argument. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/optimizers/SGD