W3cubDocs

/TensorFlow 2.4

tf.nn.scale_regularization_loss

Scales the sum of the given regularization losses by number of replicas.

Usage with distribution strategy and custom training loop:

with strategy.scope():
  def compute_loss(self, label, predictions):
    per_example_loss = tf.keras.losses.sparse_categorical_crossentropy(
        labels, predictions)

    # Compute loss that is scaled by sample_weight and by global batch size.
    loss = tf.nn.compute_average_loss(
        per_example_loss,
        sample_weight=sample_weight,
        global_batch_size=GLOBAL_BATCH_SIZE)

    # Add scaled regularization losses.
    loss += tf.nn.scale_regularization_loss(tf.nn.l2_loss(weights))
    return loss
Args
regularization_loss Regularization loss.
Returns
Scalar loss value.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/nn/scale_regularization_loss