W3cubDocs

/TensorFlow 2.4

tf.numpy_function

Wraps a python function and uses it as a TensorFlow op.

Given a python function func wrap this function as an operation in a TensorFlow function. func must take numpy arrays as its arguments and return numpy arrays as its outputs.

The following example creates a TensorFlow graph with np.sinh() as an operation in the graph:

def my_numpy_func(x):
  # x will be a numpy array with the contents of the input to the
  # tf.function
  return np.sinh(x)
@tf.function(input_signature=[tf.TensorSpec(None, tf.float32)])
def tf_function(input):
  y = tf.numpy_function(my_numpy_func, [input], tf.float32)
  return y * y
tf_function(tf.constant(1.))
<tf.Tensor: shape=(), dtype=float32, numpy=1.3810978>

Comparison to tf.py_function: tf.py_function and tf.numpy_function are very similar, except that tf.numpy_function takes numpy arrays, and not tf.Tensors. If you want the function to contain tf.Tensors, and have any TensorFlow operations executed in the function be differentiable, please use tf.py_function.

Note: The tf.numpy_function operation has the following known limitations:
  • The body of the function (i.e. func) will not be serialized in a tf.SavedModel. Therefore, you should not use this function if you need to serialize your model and restore it in a different environment.

  • The operation must run in the same address space as the Python program that calls tf.numpy_function(). If you are using distributed TensorFlow, you must run a tf.distribute.Server in the same process as the program that calls tf.numpy_function you must pin the created operation to a device in that server (e.g. using with tf.device():).

  • Since the function takes numpy arrays, you cannot take gradients through a numpy_function. If you require something that is differentiable, please consider using tf.py_function.

  • The resulting function is assumed stateful and will never be optimized.

Args
func A Python function, which accepts numpy.ndarray objects as arguments and returns a list of numpy.ndarray objects (or a single numpy.ndarray). This function must accept as many arguments as there are tensors in inp, and these argument types will match the corresponding tf.Tensor objects in inp. The returns numpy.ndarrays must match the number and types defined Tout. Important Note: Input and output numpy.ndarrays of func are not guaranteed to be copies. In some cases their underlying memory will be shared with the corresponding TensorFlow tensors. In-place modification or storing func input or return values in python datastructures without explicit (np.)copy can have non-deterministic consequences.
inp A list of tf.Tensor objects.
Tout A list or tuple of tensorflow data types or a single tensorflow data type if there is only one, indicating what func returns.
name (Optional) A name for the operation.
Returns
Single or list of tf.Tensor which func computes.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/numpy_function