Creates a dataset that applies f
to the outputs of input_dataset
.
tf.raw_ops.ExperimentalParallelInterleaveDataset( input_dataset, other_arguments, cycle_length, block_length, sloppy, buffer_output_elements, prefetch_input_elements, f, output_types, output_shapes, name=None )
The resulting dataset is similar to the InterleaveDataset
, with the exception that if retrieving the next value from a dataset would cause the requester to block, it will skip that input dataset. This dataset is especially useful when loading data from a variable-latency datastores (e.g. HDFS, GCS), as it allows the training step to proceed so long as some data is available.
!! WARNING !! This dataset is not deterministic!
Args | |
---|---|
input_dataset | A Tensor of type variant . |
other_arguments | A list of Tensor objects. |
cycle_length | A Tensor of type int64 . |
block_length | A Tensor of type int64 . |
sloppy | A Tensor of type bool . |
buffer_output_elements | A Tensor of type int64 . |
prefetch_input_elements | A Tensor of type int64 . |
f | A function decorated with @Defun. A function mapping elements of input_dataset , concatenated with other_arguments , to a Dataset variant that contains elements matching output_types and output_shapes . |
output_types | A list of tf.DTypes that has length >= 1 . |
output_shapes | A list of shapes (each a tf.TensorShape or list of ints ) that has length >= 1 . |
name | A name for the operation (optional). |
Returns | |
---|---|
A Tensor of type variant . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/ExperimentalParallelInterleaveDataset