Gradients for Local Response Normalization.
tf.raw_ops.LRNGrad( input_grads, input_image, output_image, depth_radius=5, bias=1, alpha=1, beta=0.5, name=None )
Args | |
---|---|
input_grads | A Tensor . Must be one of the following types: half , bfloat16 , float32 . 4-D with shape [batch, height, width, channels] . |
input_image | A Tensor . Must have the same type as input_grads . 4-D with shape [batch, height, width, channels] . |
output_image | A Tensor . Must have the same type as input_grads . 4-D with shape [batch, height, width, channels] . |
depth_radius | An optional int . Defaults to 5 . A depth radius. |
bias | An optional float . Defaults to 1 . An offset (usually > 0 to avoid dividing by 0). |
alpha | An optional float . Defaults to 1 . A scale factor, usually positive. |
beta | An optional float . Defaults to 0.5 . An exponent. |
name | A name for the operation (optional). |
Returns | |
---|---|
A Tensor . Has the same type as input_grads . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/LRNGrad