Update '*var' according to the Ftrl-proximal scheme.

tf.raw_ops.ResourceApplyFtrl( var, accum, linear, grad, lr, l1, l2, lr_power, use_locking=False, multiply_linear_by_lr=False, name=None )

accum_new = accum + grad * grad linear += grad - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 accum = accum_new

Args | |
---|---|

`var` | A `Tensor` of type `resource` . Should be from a Variable(). |

`accum` | A `Tensor` of type `resource` . Should be from a Variable(). |

`linear` | A `Tensor` of type `resource` . Should be from a Variable(). |

`grad` | A `Tensor` . Must be one of the following types: `float32` , `float64` , `int32` , `uint8` , `int16` , `int8` , `complex64` , `int64` , `qint8` , `quint8` , `qint32` , `bfloat16` , `uint16` , `complex128` , `half` , `uint32` , `uint64` . The gradient. |

`lr` | A `Tensor` . Must have the same type as `grad` . Scaling factor. Must be a scalar. |

`l1` | A `Tensor` . Must have the same type as `grad` . L1 regularization. Must be a scalar. |

`l2` | A `Tensor` . Must have the same type as `grad` . L2 regularization. Must be a scalar. |

`lr_power` | A `Tensor` . Must have the same type as `grad` . Scaling factor. Must be a scalar. |

`use_locking` | An optional `bool` . Defaults to `False` . If `True` , updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. |

`multiply_linear_by_lr` | An optional `bool` . Defaults to `False` . |

`name` | A name for the operation (optional). |

Returns | |
---|---|

The created Operation. |

© 2020 The TensorFlow Authors. All rights reserved.

Licensed under the Creative Commons Attribution License 3.0.

Code samples licensed under the Apache 2.0 License.

https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/ResourceApplyFtrl