Update '*var' as FOBOS algorithm with fixed learning rate.

tf.raw_ops.ResourceApplyProximalGradientDescent( var, alpha, l1, l2, delta, use_locking=False, name=None )

prox_v = var - alpha * delta var = sign(prox_v)/(1+alpha*l2) * max{|prox_v|-alpha*l1,0}

Args | |
---|---|

`var` | A `Tensor` of type `resource` . Should be from a Variable(). |

`alpha` | A `Tensor` . Must be one of the following types: `float32` , `float64` , `int32` , `uint8` , `int16` , `int8` , `complex64` , `int64` , `qint8` , `quint8` , `qint32` , `bfloat16` , `uint16` , `complex128` , `half` , `uint32` , `uint64` . Scaling factor. Must be a scalar. |

`l1` | A `Tensor` . Must have the same type as `alpha` . L1 regularization. Must be a scalar. |

`l2` | A `Tensor` . Must have the same type as `alpha` . L2 regularization. Must be a scalar. |

`delta` | A `Tensor` . Must have the same type as `alpha` . The change. |

`use_locking` | An optional `bool` . Defaults to `False` . If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. |

`name` | A name for the operation (optional). |

Returns | |
---|---|

The created Operation. |

© 2020 The TensorFlow Authors. All rights reserved.

Licensed under the Creative Commons Attribution License 3.0.

Code samples licensed under the Apache 2.0 License.

https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/ResourceApplyProximalGradientDescent