Sparse-matrix-multiplies two CSR matrices a
and b
.
tf.raw_ops.SparseMatrixSparseMatMul( a, b, type, transpose_a=False, transpose_b=False, adjoint_a=False, adjoint_b=False, name=None )
Performs a matrix multiplication of a sparse matrix a
with a sparse matrix b
; returns a sparse matrix a * b
, unless either a
or b
is transposed or adjointed.
Each matrix may be transposed or adjointed (conjugated and transposed) according to the Boolean parameters transpose_a
, adjoint_a
, transpose_b
and adjoint_b
. At most one of transpose_a
or adjoint_a
may be True. Similarly, at most one of transpose_b
or adjoint_b
may be True.
The inputs must have compatible shapes. That is, the inner dimension of a
must be equal to the outer dimension of b
. This requirement is adjusted according to whether either a
or b
is transposed or adjointed.
The type
parameter denotes the type of the matrix elements. Both a
and b
must have the same type. The supported types are: float32
, float64
, complex64
and complex128
.
Both a
and b
must have the same rank. Broadcasting is not supported. If they have rank 3, each batch of 2D CSRSparseMatrices within a
and b
must have the same dense shape.
The sparse matrix product may have numeric (non-structural) zeros.
zeros.
from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops a_indices = np.array([[0, 0], [2, 3], [2, 4], [3, 0]]) a_values = np.array([1.0, 5.0, -1.0, -2.0], np.float32) a_dense_shape = [4, 5] b_indices = np.array([[0, 0], [3, 0], [3, 1]]) b_values = np.array([2.0, 7.0, 8.0], np.float32) b_dense_shape = [5, 3] with tf.Session() as sess: # Define (COO format) Sparse Tensors over Numpy arrays a_st = tf.sparse.SparseTensor(a_indices, a_values, a_dense_shape) b_st = tf.sparse.SparseTensor(b_indices, b_values, b_dense_shape) # Convert SparseTensors to CSR SparseMatrix a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( a_st.indices, a_st.values, a_st.dense_shape) b_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( b_st.indices, b_st.values, b_st.dense_shape) # Compute the CSR SparseMatrix matrix multiplication c_sm = sparse_csr_matrix_ops.sparse_matrix_sparse_mat_mul( a=a_sm, b=b_sm, type=tf.float32) # Convert the CSR SparseMatrix product to a dense Tensor c_sm_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( c_sm, tf.float32) # Evaluate the dense Tensor value c_sm_dense_value = sess.run(c_sm_dense)
c_sm_dense_value
stores the dense matrix product:
[[ 2. 0. 0.] [ 0. 0. 0.] [ 35. 40. 0.] [ -4. 0. 0.]]
a: A CSRSparseMatrix
. b: A CSRSparseMatrix
with the same type and rank as a
. type: The type of both a
and b
. transpose_a: If True, a
transposed before multiplication. transpose_b: If True, b
transposed before multiplication. adjoint_a: If True, a
adjointed before multiplication. adjoint_b: If True, b
adjointed before multiplication.
Args | |
---|---|
a | A Tensor of type variant . A CSRSparseMatrix. |
b | A Tensor of type variant . A CSRSparseMatrix. |
type | A tf.DType from: tf.float32, tf.float64, tf.complex64, tf.complex128 . |
transpose_a | An optional bool . Defaults to False . Indicates whether a should be transposed. |
transpose_b | An optional bool . Defaults to False . Indicates whether b should be transposed. |
adjoint_a | An optional bool . Defaults to False . Indicates whether a should be conjugate-transposed. |
adjoint_b | An optional bool . Defaults to False . Indicates whether b should be conjugate-transposed. |
name | A name for the operation (optional). |
Returns | |
---|---|
A Tensor of type variant . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/SparseMatrixSparseMatMul