W3cubDocs

/TensorFlow 2.4

tf.raw_ops.SparseMatrixSparseMatMul

Sparse-matrix-multiplies two CSR matrices a and b.

Performs a matrix multiplication of a sparse matrix a with a sparse matrix b; returns a sparse matrix a * b, unless either a or b is transposed or adjointed.

Each matrix may be transposed or adjointed (conjugated and transposed) according to the Boolean parameters transpose_a, adjoint_a, transpose_b and adjoint_b. At most one of transpose_a or adjoint_a may be True. Similarly, at most one of transpose_b or adjoint_b may be True.

The inputs must have compatible shapes. That is, the inner dimension of a must be equal to the outer dimension of b. This requirement is adjusted according to whether either a or b is transposed or adjointed.

The type parameter denotes the type of the matrix elements. Both a and b must have the same type. The supported types are: float32, float64, complex64 and complex128.

Both a and b must have the same rank. Broadcasting is not supported. If they have rank 3, each batch of 2D CSRSparseMatrices within a and b must have the same dense shape.

The sparse matrix product may have numeric (non-structural) zeros.

zeros.

Usage example:

from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops

a_indices = np.array([[0, 0], [2, 3], [2, 4], [3, 0]])
a_values = np.array([1.0, 5.0, -1.0, -2.0], np.float32)
a_dense_shape = [4, 5]

b_indices = np.array([[0, 0], [3, 0], [3, 1]])
b_values = np.array([2.0, 7.0, 8.0], np.float32)
b_dense_shape = [5, 3]

with tf.Session() as sess:
  # Define (COO format) Sparse Tensors over Numpy arrays
  a_st = tf.sparse.SparseTensor(a_indices, a_values, a_dense_shape)
  b_st = tf.sparse.SparseTensor(b_indices, b_values, b_dense_shape)

  # Convert SparseTensors to CSR SparseMatrix
  a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
      a_st.indices, a_st.values, a_st.dense_shape)
  b_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
      b_st.indices, b_st.values, b_st.dense_shape)

  # Compute the CSR SparseMatrix matrix multiplication
  c_sm = sparse_csr_matrix_ops.sparse_matrix_sparse_mat_mul(
      a=a_sm, b=b_sm, type=tf.float32)

  # Convert the CSR SparseMatrix product to a dense Tensor
  c_sm_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense(
      c_sm, tf.float32)
  # Evaluate the dense Tensor value
  c_sm_dense_value = sess.run(c_sm_dense)

c_sm_dense_value stores the dense matrix product:

[[  2.   0.   0.]
 [  0.   0.   0.]
 [ 35.  40.   0.]
 [ -4.   0.   0.]]

a: A CSRSparseMatrix. b: A CSRSparseMatrix with the same type and rank as a. type: The type of both a and b. transpose_a: If True, a transposed before multiplication. transpose_b: If True, b transposed before multiplication. adjoint_a: If True, a adjointed before multiplication. adjoint_b: If True, b adjointed before multiplication.

Args
a A Tensor of type variant. A CSRSparseMatrix.
b A Tensor of type variant. A CSRSparseMatrix.
type A tf.DType from: tf.float32, tf.float64, tf.complex64, tf.complex128.
transpose_a An optional bool. Defaults to False. Indicates whether a should be transposed.
transpose_b An optional bool. Defaults to False. Indicates whether b should be transposed.
adjoint_a An optional bool. Defaults to False. Indicates whether a should be conjugate-transposed.
adjoint_b An optional bool. Defaults to False. Indicates whether b should be conjugate-transposed.
name A name for the operation (optional).
Returns
A Tensor of type variant.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/SparseMatrixSparseMatMul