/TensorFlow 2.4

# tf.raw_ops.Tile

Constructs a tensor by tiling a given tensor.

This operation creates a new tensor by replicating `input` `multiples` times. The output tensor's i'th dimension has `input.dims(i) * multiples[i]` elements, and the values of `input` are replicated `multiples[i]` times along the 'i'th dimension. For example, tiling `[a b c d]` by `[2]` produces `[a b c d a b c d]`.

```a = tf.constant([[1,2,3],[4,5,6]], tf.int32)
b = tf.constant([1,2], tf.int32)
tf.tile(a, b)
<tf.Tensor: shape=(2, 6), dtype=int32, numpy=
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]], dtype=int32)>
c = tf.constant([2,1], tf.int32)
tf.tile(a, c)
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]], dtype=int32)>
d = tf.constant([2,2], tf.int32)
tf.tile(a, d)
<tf.Tensor: shape=(4, 6), dtype=int32, numpy=
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6],
[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]], dtype=int32)>
```
Args
`input` A `Tensor`. 1-D or higher.
`multiples` A `Tensor`. Must be one of the following types: `int32`, `int64`. 1-D. Length must be the same as the number of dimensions in `input`
`name` A name for the operation (optional).
Returns
A `Tensor`. Has the same type as `input`.