Applies upper_bound(sorted_search_values, values) along each row.
tf.raw_ops.UpperBound( sorted_inputs, values, out_type=tf.dtypes.int32, name=None )
Each set of rows with the same index in (sorted_inputs, values) is treated independently. The resulting row is the equivalent of calling np.searchsorted(sorted_inputs, values, side='right')
.
The result is not a global index to the entire Tensor
, but rather just the index in the last dimension.
A 2-D example: sorted_sequence = [[0, 3, 9, 9, 10], [1, 2, 3, 4, 5]] values = [[2, 4, 9], [0, 2, 6]]
result = UpperBound(sorted_sequence, values)
result == [[1, 2, 4], [0, 2, 5]]
Args | |
---|---|
sorted_inputs | A Tensor . 2-D Tensor where each row is ordered. |
values | A Tensor . Must have the same type as sorted_inputs . 2-D Tensor with the same numbers of rows as sorted_search_values . Contains the values that will be searched for in sorted_search_values . |
out_type | An optional tf.DType from: tf.int32, tf.int64 . Defaults to tf.int32 . |
name | A name for the operation (optional). |
Returns | |
---|---|
A Tensor of type out_type . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/UpperBound