Configuration data for one embedding feature.
tf.tpu.experimental.embedding.FeatureConfig( table: tf.tpu.experimental.embedding.TableConfig, max_sequence_length: int = 0, name: Optional[Text] = None )
This class holds the configuration data for a single embedding feature. The main use is to assign features to tf.tpu.experimental.embedding.TableConfig
s via the table parameter:
table_config_one = tf.tpu.experimental.embedding.TableConfig( vocabulary_size=..., dim=...) table_config_two = tf.tpu.experimental.embedding.TableConfig( vocabulary_size=..., dim=...) feature_config = { 'feature_one': tf.tpu.experimental.embedding.FeatureConfig( table=table_config_one), 'feature_two': tf.tpu.experimental.embedding.FeatureConfig( table=table_config_one), 'feature_three': tf.tpu.experimental.embedding.FeatureConfig( table=table_config_two)} embedding = tf.tpu.experimental.embedding.TPUEmbedding( feature_config=feature_config, batch_size=... optimizer=tf.tpu.experimental.embedding.Adam(0.1))
The above configuration has 2 tables, and three features. The first two features will be looked up in the first table and the third feature will be looked up in the second table.
When feeding features into embedding.enqueue
they can be tf.Tensor
s, tf.SparseTensor
s or tf.RaggedTensor
s. When the argument max_sequence_length
is 0, the default, you should expect a output of embedding.dequeue
for this feature of shape (batch_size, dim)
. If max_sequence_length
is greater than 0, the feature is embedded as a sequence and padded up to the given length. The shape of the output for this feature will be (batch_size, max_sequence_length, dim)
.
Args | |
---|---|
table | An instance of tf.tpu.experimental.embedding.TableConfig , describing the table in which this feature should be looked up. |
max_sequence_length | If positive, the feature is a sequence feature with the corresponding maximum sequence length. If the sequence is longer than this, it will be truncated. If 0, the feature is not a sequence feature. |
name | An optional name for the feature, useful for debugging. |
Raises | |
---|---|
ValueError | if table is not an instance of tf.tpu.experimental.embedding.TableConfig . |
ValueError | if max_sequence_length not an integer or is negative. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/tpu/experimental/embedding/FeatureConfig