View source on GitHub |
Return the elements where condition
is True
(multiplexing x
and y
).
tf.where( condition, x=None, y=None, name=None )
This operator has two modes: in one mode both x
and y
are provided, in another mode neither are provided. condition
is always expected to be a tf.Tensor
of type bool
.
True
elementsIf x
and y
are not provided (both are None):
tf.where
will return the indices of condition
that are True
, in the form of a 2-D tensor with shape (n, d). (Where n is the number of matching indices in condition
, and d is the number of dimensions in condition
).
Indices are output in row-major order.
tf.where([True, False, False, True]) <tf.Tensor: shape=(2, 1), dtype=int64, numpy= array([[0], [3]])>
tf.where([[True, False], [False, True]]) <tf.Tensor: shape=(2, 2), dtype=int64, numpy= array([[0, 0], [1, 1]])>
tf.where([[[True, False], [False, True], [True, True]]]) <tf.Tensor: shape=(4, 3), dtype=int64, numpy= array([[0, 0, 0], [0, 1, 1], [0, 2, 0], [0, 2, 1]])>
x
and y
If x
and y
are provided (both have non-None values):
tf.where
will choose an output shape from the shapes of condition
, x
, and y
that all three shapes are broadcastable to.
The condition
tensor acts as a mask that chooses whether the corresponding element / row in the output should be taken from x
(if the element in condition
is True) or y
(if it is false).
tf.where([True, False, False, True], [1,2,3,4], [100,200,300,400]) <tf.Tensor: shape=(4,), dtype=int32, numpy=array([ 1, 200, 300, 4], dtype=int32)> tf.where([True, False, False, True], [1,2,3,4], [100]) <tf.Tensor: shape=(4,), dtype=int32, numpy=array([ 1, 100, 100, 4], dtype=int32)> tf.where([True, False, False, True], [1,2,3,4], 100) <tf.Tensor: shape=(4,), dtype=int32, numpy=array([ 1, 100, 100, 4], dtype=int32)> tf.where([True, False, False, True], 1, 100) <tf.Tensor: shape=(4,), dtype=int32, numpy=array([ 1, 100, 100, 1], dtype=int32)>
tf.where(True, [1,2,3,4], 100) <tf.Tensor: shape=(4,), dtype=int32, numpy=array([1, 2, 3, 4], dtype=int32)> tf.where(False, [1,2,3,4], 100) <tf.Tensor: shape=(4,), dtype=int32, numpy=array([100, 100, 100, 100], dtype=int32)>
Note that if the gradient of either branch of the tf.where generates a NaN, then the gradient of the entire tf.where will be NaN. A workaround is to use an inner tf.where to ensure the function has no asymptote, and to avoid computing a value whose gradient is NaN by replacing dangerous inputs with safe inputs.
Instead of this,
y = tf.constant(-1, dtype=tf.float32) tf.where(y > 0, tf.sqrt(y), y) <tf.Tensor: shape=(), dtype=float32, numpy=-1.0>
Use this
tf.where(y > 0, tf.sqrt(tf.where(y > 0, y, 1)), y) <tf.Tensor: shape=(), dtype=float32, numpy=-1.0>
Args | |
---|---|
condition | A tf.Tensor of type bool |
x | If provided, a Tensor which is of the same type as y , and has a shape broadcastable with condition and y . |
y | If provided, a Tensor which is of the same type as x , and has a shape broadcastable with condition and x . |
name | A name of the operation (optional). |
Returns | |
---|---|
If x and y are provided: A Tensor with the same type as x and y , and shape that is broadcast from condition , x , and y . Otherwise, a Tensor with shape (num_true, dim_size(condition)) . |
Raises | |
---|---|
ValueError | When exactly one of x or y is non-None, or the shapes are not all broadcastable. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/where