| View source on GitHub | 
Clips tensor values to a specified min and max.
tf.clip_by_value(
    t, clip_value_min, clip_value_max, name=None
)
  Given a tensor t, this operation returns a tensor of the same type and shape as t with its values clipped to clip_value_min and clip_value_max. Any values less than clip_value_min are set to clip_value_min. Any values greater than clip_value_max are set to clip_value_max.
Note:clip_value_minneeds to be smaller or equal toclip_value_maxfor correct results.
Basic usage passes a scalar as the min and max value.
t = tf.constant([[-10., -1., 0.], [0., 2., 10.]])
t2 = tf.clip_by_value(t, clip_value_min=-1, clip_value_max=1)
t2.numpy()
array([[-1., -1.,  0.],
       [ 0.,  1.,  1.]], dtype=float32)
 The min and max can be the same size as t, or broadcastable to that size.
t = tf.constant([[-1, 0., 10.], [-1, 0, 10]])
clip_min = [[2],[1]]
t3 = tf.clip_by_value(t, clip_value_min=clip_min, clip_value_max=100)
t3.numpy()
array([[ 2.,  2., 10.],
       [ 1.,  1., 10.]], dtype=float32)
 Broadcasting fails, intentionally, if you would expand the dimensions of t
t = tf.constant([[-1, 0., 10.], [-1, 0, 10]]) clip_min = [[[2, 1]]] # Has a third axis t4 = tf.clip_by_value(t, clip_value_min=clip_min, clip_value_max=100) Traceback (most recent call last): InvalidArgumentError: Incompatible shapes: [2,3] vs. [1,1,2]
It throws a TypeError if you try to clip an int to a float value (tf.cast the input to float first).
t = tf.constant([[1, 2], [3, 4]], dtype=tf.int32) t5 = tf.clip_by_value(t, clip_value_min=-3.1, clip_value_max=3.1) Traceback (most recent call last): TypeError: Cannot convert ...
| Args | |
|---|---|
| t | A TensororIndexedSlices. | 
| clip_value_min | The minimum value to clip to. A scalar Tensoror one that is broadcastable to the shape oft. | 
| clip_value_max | The maximum value to clip to. A scalar Tensoror one that is broadcastable to the shape oft. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A clipped TensororIndexedSlices. | 
| Raises | |
|---|---|
| tf.errors.InvalidArgumentError: If the clip tensors would trigger array broadcasting that would make the returned tensor larger than the input. | |
| TypeError | If dtype of the input is int32and dtype of theclip_value_minorclip_value_maxisfloat32 | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/clip_by_value