The Glorot uniform initializer, also called Xavier uniform initializer.
Inherits From: VarianceScaling
tf.compat.v1.keras.initializers.glorot_uniform(
    seed=None,
    dtype=tf.dtypes.float32
)
  It draws samples from a uniform distribution within [-limit, limit] where limit is sqrt(6 / (fan_in + fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor.
| Args | |
|---|---|
| seed | A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seedfor behavior. | 
| dtype | Default data type, used if no dtypeargument is provided when calling the initializer. Only floating point types are supported. | 
from_config
@classmethod
from_config(
    config
)
 Instantiates an initializer from a configuration dictionary.
initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
| config | A Python dictionary. It will typically be the output of get_config. | 
| Returns | |
|---|---|
| An Initializer instance. | 
get_configget_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
__call__(
    shape, dtype=None, partition_info=None
)
 Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
| shape | Shape of the tensor. | 
| dtype | Optional dtype of the tensor. If not provided use the initializer dtype. | 
| partition_info | Optional information about the possible partitioning of a tensor. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/compat/v1/keras/initializers/glorot_uniform