Draws shape samples from each of the given Poisson distribution(s).
tf.compat.v1.random_poisson(
    lam,
    shape,
    dtype=tf.dtypes.float32,
    seed=None,
    name=None
)
  lam is the rate parameter describing the distribution(s).
samples = tf.random.poisson([0.5, 1.5], [10]) # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents # the samples drawn from each distribution samples = tf.random.poisson([12.2, 3.3], [7, 5]) # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1] # represents the 7x5 samples drawn from each of the two distributions
| Args | |
|---|---|
| lam | A Tensor or Python value or N-D array of type dtype.lamprovides the rate parameter(s) describing the poisson distribution(s) to sample. | 
| shape | A 1-D integer Tensor or Python array. The shape of the output samples to be drawn per "rate"-parameterized distribution. | 
| dtype | The type of the output: float16,float32,float64,int32orint64. | 
| seed | A Python integer. Used to create a random seed for the distributions. See tf.random.set_seedfor behavior. | 
| name | Optional name for the operation. | 
| Returns | |
|---|---|
| samples | a Tensorof shapetf.concat([shape, tf.shape(lam)], axis=0)with values of typedtype. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/compat/v1/random_poisson