Initializer that generates a truncated normal distribution.
tf.compat.v1.truncated_normal_initializer(
    mean=0.0,
    stddev=1.0,
    seed=None,
    dtype=tf.dtypes.float32
)
 Migrate to TF2
Although it is a legacy compat.v1 API, this symbol is compatible with eager execution and tf.function.
To switch to TF2, switch to using either tf.initializers.truncated_normal or tf.keras.initializers.TruncatedNormal (neither from compat.v1) and pass the dtype when calling the initializer. Keep in mind that the default stddev and the behavior of fixed seeds have changed.
Before:
initializer = tf.compat.v1.truncated_normal_initializer( mean=mean, stddev=stddev, seed=seed, dtype=dtype) weight_one = tf.Variable(initializer(shape_one)) weight_two = tf.Variable(initializer(shape_two))
After:
initializer = tf.initializers.truncated_normal( mean=mean, seed=seed, stddev=stddev) weight_one = tf.Variable(initializer(shape_one, dtype=dtype)) weight_two = tf.Variable(initializer(shape_two, dtype=dtype))
| TF1 Arg Name | TF2 Arg Name | Note | 
|---|---|---|
| mean | mean | No change to defaults | 
| stddev | stddev | Default changes from 1.0 to 0.05 | 
| seed | seed | |
| dtype | dtype | The TF2 native api only takes it as a __call__arg, not a constructor arg. | 
| partition_info | - | ( __call__arg in TF1) Not supported | 
These values are similar to values from a random_normal_initializer except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters.
| Args | |
|---|---|
| mean | a python scalar or a scalar tensor. Mean of the random values to generate. | 
| stddev | a python scalar or a scalar tensor. Standard deviation of the random values to generate. | 
| seed | A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seedfor behavior. | 
| dtype | Default data type, used if no dtypeargument is provided when calling the initializer. Only floating point types are supported. | 
from_config
@classmethod
from_config(
    config
)
 Instantiates an initializer from a configuration dictionary.
initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
| config | A Python dictionary. It will typically be the output of get_config. | 
| Returns | |
|---|---|
| An Initializer instance. | 
get_configget_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
__call__(
    shape, dtype=None, partition_info=None
)
 Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
| shape | Shape of the tensor. | 
| dtype | Optional dtype of the tensor. If not provided use the initializer dtype. | 
| partition_info | Optional information about the possible partitioning of a tensor. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/compat/v1/truncated_normal_initializer