Initializer that generates a truncated normal distribution.
tf.compat.v1.truncated_normal_initializer(
mean=0.0,
stddev=1.0,
seed=None,
dtype=tf.dtypes.float32
)
Migrate to TF2
Although it is a legacy compat.v1 API, this symbol is compatible with eager execution and tf.function.
To switch to TF2, switch to using either tf.initializers.truncated_normal or tf.keras.initializers.TruncatedNormal (neither from compat.v1) and pass the dtype when calling the initializer. Keep in mind that the default stddev and the behavior of fixed seeds have changed.
Before:
initializer = tf.compat.v1.truncated_normal_initializer( mean=mean, stddev=stddev, seed=seed, dtype=dtype) weight_one = tf.Variable(initializer(shape_one)) weight_two = tf.Variable(initializer(shape_two))
After:
initializer = tf.initializers.truncated_normal( mean=mean, seed=seed, stddev=stddev) weight_one = tf.Variable(initializer(shape_one, dtype=dtype)) weight_two = tf.Variable(initializer(shape_two, dtype=dtype))
| TF1 Arg Name | TF2 Arg Name | Note |
|---|---|---|
mean | mean | No change to defaults |
stddev | stddev | Default changes from 1.0 to 0.05 |
seed | seed | |
dtype |
dtype | The TF2 native api only takes it as a __call__ arg, not a constructor arg. |
partition_info | - | (__call__ arg in TF1) Not supported |
These values are similar to values from a random_normal_initializer except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters.
| Args | |
|---|---|
mean | a python scalar or a scalar tensor. Mean of the random values to generate. |
stddev | a python scalar or a scalar tensor. Standard deviation of the random values to generate. |
seed | A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seed for behavior. |
dtype | Default data type, used if no dtype argument is provided when calling the initializer. Only floating point types are supported. |
from_config
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
config | A Python dictionary. It will typically be the output of get_config. |
| Returns | |
|---|---|
| An Initializer instance. |
get_configget_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. |
__call__
__call__(
shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
shape | Shape of the tensor. |
dtype | Optional dtype of the tensor. If not provided use the initializer dtype. |
partition_info | Optional information about the possible partitioning of a tensor. |
© 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/compat/v1/truncated_normal_initializer