tf.keras.applications.imagenet_utils.preprocess_input
        Preprocesses a tensor or Numpy array encoding a batch of images.
  
tf.keras.applications.imagenet_utils.preprocess_input(
    x, data_format=None, mode='caffe'
)
  Usage example with applications.MobileNet:
 i = tf.keras.layers.Input([None, None, 3], dtype = tf.uint8)
x = tf.cast(i, tf.float32)
x = tf.keras.applications.mobilenet.preprocess_input(x)
core = tf.keras.applications.MobileNet()
x = core(x)
model = tf.keras.Model(inputs=[i], outputs=[x])
image = tf.image.decode_png(tf.io.read_file('file.png'))
result = model(image)
  
 
 | Args | 
|---|
 
 | x | A floating point numpy.arrayor atf.Tensor, 3D or 4D with 3 color channels, with values in the range [0, 255]. The preprocessed data are written over the input data if the data types are compatible. To avoid this behaviour,numpy.copy(x)can be used. | 
 | data_format | Optional data format of the image tensor/array. Defaults to None, in which case the global setting tf.keras.backend.image_data_format()is used (unless you changed it, it defaults to "channels_last"). | 
 | mode | One of "caffe", "tf" or "torch". Defaults to "caffe".  caffe: will convert the images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling.tf: will scale pixels between -1 and 1, sample-wise.torch: will scale pixels between 0 and 1 and then will normalize each channel with respect to the ImageNet dataset.  | 
 
  
 
 | Returns | 
|---|
  | Preprocessed numpy.arrayor atf.Tensorwith typefloat32. | 
 
  
 
 | Raises | 
|---|
 
 | ValueError | In case of unknown modeordata_formatargument. |