| View source on GitHub | 
Transposed convolution layer (sometimes called Deconvolution).
Inherits From: Conv3D, Layer, Module
tf.keras.layers.Conv3DTranspose(
    filters,
    kernel_size,
    strides=(1, 1, 1),
    padding='valid',
    output_padding=None,
    data_format=None,
    dilation_rate=(1, 1, 1),
    activation=None,
    use_bias=True,
    kernel_initializer='glorot_uniform',
    bias_initializer='zeros',
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    **kwargs
)
  The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
When using this layer as the first layer in a model, provide the keyword argument input_shape (tuple of integers or None, does not include the sample axis), e.g. input_shape=(128, 128, 128, 3) for a 128x128x128 volume with 3 channels if data_format="channels_last".
| Args | |
|---|---|
| filters | Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). | 
| kernel_size | An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions. | 
| strides | An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_ratevalue != 1. | 
| padding | one of "valid"or"same"(case-insensitive)."valid"means no padding."same"results in padding with zeros evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. | 
| output_padding | An integer or tuple/list of 3 integers, specifying the amount of padding along the depth, height, and width. Can be a single integer to specify the same value for all spatial dimensions. The amount of output padding along a given dimension must be lower than the stride along that same dimension. If set to None(default), the output shape is inferred. | 
| data_format | A string, one of channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, depth, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch_size, channels, depth, height, width). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last". | 
| dilation_rate | an integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_ratevalue != 1 is incompatible with specifying any stride value != 1. | 
| activation | Activation function to use. If you don't specify anything, no activation is applied (see keras.activations). | 
| use_bias | Boolean, whether the layer uses a bias vector. | 
| kernel_initializer | Initializer for the kernelweights matrix (seekeras.initializers). Defaults to 'glorot_uniform'. | 
| bias_initializer | Initializer for the bias vector (see keras.initializers). Defaults to 'zeros'. | 
| kernel_regularizer | Regularizer function applied to the kernelweights matrix (seekeras.regularizers). | 
| bias_regularizer | Regularizer function applied to the bias vector (see keras.regularizers). | 
| activity_regularizer | Regularizer function applied to the output of the layer (its "activation") (see keras.regularizers). | 
| kernel_constraint | Constraint function applied to the kernel matrix (see keras.constraints). | 
| bias_constraint | Constraint function applied to the bias vector (see keras.constraints). | 
5D tensor with shape: (batch_size, channels, depth, rows, cols) if data_format='channels_first' or 5D tensor with shape: (batch_size, depth, rows, cols, channels) if data_format='channels_last'.
5D tensor with shape: (batch_size, filters, new_depth, new_rows, new_cols) if data_format='channels_first' or 5D tensor with shape: (batch_size, new_depth, new_rows, new_cols, filters) if data_format='channels_last'. depth and rows and cols values might have changed due to padding. If output_padding is specified::
new_depth = ((depth - 1) * strides[0] + kernel_size[0] - 2 * padding[0] + output_padding[0]) new_rows = ((rows - 1) * strides[1] + kernel_size[1] - 2 * padding[1] + output_padding[1]) new_cols = ((cols - 1) * strides[2] + kernel_size[2] - 2 * padding[2] + output_padding[2])
| Returns | |
|---|---|
| A tensor of rank 5 representing activation(conv3dtranspose(inputs, kernel) + bias). | 
| Raises | |
|---|---|
| ValueError | if paddingis "causal". | 
| ValueError | when both strides> 1 anddilation_rate> 1. | 
convolution_op
convolution_op(
    inputs, kernel
)
  
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/layers/Conv3DTranspose