| View source on GitHub | 
Softmax activation function.
tf.keras.layers.Softmax(
    axis=-1, **kwargs
)
  inp = np.asarray([1., 2., 1.]) layer = tf.keras.layers.Softmax() layer(inp).numpy() array([0.21194157, 0.5761169 , 0.21194157], dtype=float32) mask = np.asarray([True, False, True], dtype=bool) layer(inp, mask).numpy() array([0.5, 0. , 0.5], dtype=float32)
Arbitrary. Use the keyword argument input_shape (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model.
Same shape as the input.
| Args | |
|---|---|
| axis | Integer, or list of Integers, axis along which the softmax normalization is applied. | 
inputs: The inputs, or logits to the softmax layer.mask: A boolean mask of the same shape as inputs. Defaults to None. The mask specifies 1 to keep and 0 to mask.| Returns | |
|---|---|
| softmaxed output with the same shape as inputs. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/layers/Softmax