Computes the focal cross-entropy loss between true labels and predictions.
Inherits From: Loss
tf.keras.losses.BinaryFocalCrossentropy(
    gamma=2.0,
    from_logits=False,
    label_smoothing=0.0,
    axis=-1,
    reduction=losses_utils.ReductionV2.AUTO,
    name='binary_focal_crossentropy'
)
  Binary cross-entropy loss is often used for binary (0 or 1) classification tasks. The loss function requires the following inputs:
y_true (true label): This is either 0 or 1.y_pred (predicted value): This is the model's prediction, i.e, a single floating-point value which either represents a logit, (i.e, value in [-inf, inf] when from_logits=True) or a probability (i.e, value in [0., 1.] when from_logits=False).According to Lin et al., 2018, it helps to apply a "focal factor" to down-weight easy examples and focus more on hard examples. By default, the focal tensor is computed as follows:
focal_factor = (1 - output) ** gamma for class 1 focal_factor = output ** gamma for class 0 where gamma is a focusing parameter. When gamma=0, this function is equivalent to the binary crossentropy loss.
With the compile() API:
model.compile( loss=tf.keras.losses.BinaryFocalCrossentropy(gamma=2.0, from_logits=True), .... )
As a standalone function:
# Example 1: (batch_size = 1, number of samples = 4) y_true = [0, 1, 0, 0] y_pred = [-18.6, 0.51, 2.94, -12.8] loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=2, from_logits=True) loss(y_true, y_pred).numpy() 0.691
# Example 2: (batch_size = 2, number of samples = 4) y_true = [[0, 1], [0, 0]] y_pred = [[-18.6, 0.51], [2.94, -12.8]] # Using default 'auto'/'sum_over_batch_size' reduction type. loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=3, from_logits=True) loss(y_true, y_pred).numpy() 0.647
# Using 'sample_weight' attribute loss(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy() 0.133
# Using 'sum' reduction` type.
loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=4, from_logits=True,
    reduction=tf.keras.losses.Reduction.SUM)
loss(y_true, y_pred).numpy()
1.222
 
# Using 'none' reduction type.
loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=5, from_logits=True,
    reduction=tf.keras.losses.Reduction.NONE)
loss(y_true, y_pred).numpy()
array([0.0017 1.1561], dtype=float32)
  
| Args | |
|---|---|
| gamma | A focusing parameter used to compute the focal factor, default is 2.0as mentioned in the reference Lin et al., 2018. | 
| from_logits | Whether to interpret y_predas a tensor of logit values. By default, we assume thaty_predare probabilities (i.e., values in[0, 1]). | 
| label_smoothing | Float in [0, 1]. When0, no smoothing occurs. When >0, we compute the loss between the predicted labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards0.5. Larger values oflabel_smoothingcorrespond to heavier smoothing. | 
| axis | The axis along which to compute crossentropy (the features axis). Defaults to -1. | 
| reduction | Type of tf.keras.losses.Reductionto apply to loss. Default value isAUTO.AUTOindicates that the reduction option will be determined by the usage context. For almost all cases this defaults toSUM_OVER_BATCH_SIZE. When used withtf.distribute.Strategy, outside of built-in training loops such astf.keras,compile()andfit(), usingSUM_OVER_BATCH_SIZEorAUTOwill raise an error. Please see this custom training tutorial for more details. | 
| name | Name for the op. Defaults to 'binary_focal_crossentropy'. | 
from_config
@classmethod
from_config(
    config
)
 Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
| config | Output of get_config(). | 
| Returns | |
|---|---|
| A Lossinstance. | 
get_configget_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
    y_true, y_pred, sample_weight=None
)
 Invokes the Loss instance.
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN], except sparse loss functions such as sparse categorical crossentropy where shape =[batch_size, d0, .. dN-1] | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN] | 
| sample_weight | Optional sample_weightacts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. Ifsample_weightis a tensor of size[batch_size], then the total loss for each sample of the batch is rescaled by the corresponding element in thesample_weightvector. If the shape ofsample_weightis[batch_size, d0, .. dN-1](or can be broadcasted to this shape), then each loss element ofy_predis scaled by the corresponding value ofsample_weight. (Note ondN-1: all loss functions reduce by 1 dimension, usually axis=-1.) | 
| Returns | |
|---|---|
| Weighted loss float Tensor. IfreductionisNONE, this has shape[batch_size, d0, .. dN-1]; otherwise, it is scalar. (NotedN-1because all loss functions reduce by 1 dimension, usually axis=-1.) | 
| Raises | |
|---|---|
| ValueError | If the shape of sample_weightis invalid. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/losses/BinaryFocalCrossentropy