| View source on GitHub | 
Computes the categorical hinge loss between y_true and y_pred.
tf.keras.losses.categorical_hinge(
    y_true, y_pred
)
  loss = maximum(neg - pos + 1, 0) where neg=maximum((1-y_true)*y_pred) and pos=sum(y_true*y_pred)
y_true = np.random.randint(0, 3, size=(2,)) y_true = tf.keras.utils.to_categorical(y_true, num_classes=3) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.categorical_hinge(y_true, y_pred) assert loss.shape == (2,) pos = np.sum(y_true * y_pred, axis=-1) neg = np.amax((1. - y_true) * y_pred, axis=-1) assert np.array_equal(loss.numpy(), np.maximum(0., neg - pos + 1.))
| Args | |
|---|---|
| y_true | The ground truth values. y_truevalues are expected to be either{-1, +1}or{0, 1}(i.e. a one-hot-encoded tensor). | 
| y_pred | The predicted values. | 
| Returns | |
|---|---|
| Categorical hinge loss values. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/losses/categorical_hinge