| View source on GitHub | 
Computes the hinge loss between y_true and y_pred.
Inherits From: Loss
tf.keras.losses.Hinge(
    reduction=losses_utils.ReductionV2.AUTO, name='hinge'
)
  loss = maximum(1 - y_true * y_pred, 0)
y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.
y_true = [[0., 1.], [0., 0.]] y_pred = [[0.6, 0.4], [0.4, 0.6]] # Using 'auto'/'sum_over_batch_size' reduction type. h = tf.keras.losses.Hinge() h(y_true, y_pred).numpy() 1.3
# Calling with 'sample_weight'. h(y_true, y_pred, sample_weight=[1, 0]).numpy() 0.55
# Using 'sum' reduction type.
h = tf.keras.losses.Hinge(
    reduction=tf.keras.losses.Reduction.SUM)
h(y_true, y_pred).numpy()
2.6
 
# Using 'none' reduction type.
h = tf.keras.losses.Hinge(
    reduction=tf.keras.losses.Reduction.NONE)
h(y_true, y_pred).numpy()
array([1.1, 1.5], dtype=float32)
 Usage with the compile() API:
model.compile(optimizer='sgd', loss=tf.keras.losses.Hinge())
| Args | |
|---|---|
| reduction | Type of tf.keras.losses.Reductionto apply to loss. Default value isAUTO.AUTOindicates that the reduction option will be determined by the usage context. For almost all cases this defaults toSUM_OVER_BATCH_SIZE. When used withtf.distribute.Strategy, outside of built-in training loops such astf.kerascompileandfit, usingAUTOorSUM_OVER_BATCH_SIZEwill raise an error. Please see this custom training tutorial for more details. | 
| name | Optional name for the instance. Defaults to 'hinge'. | 
from_config
@classmethod
from_config(
    config
)
 Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
| config | Output of get_config(). | 
| Returns | |
|---|---|
| A Lossinstance. | 
get_configget_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
    y_true, y_pred, sample_weight=None
)
 Invokes the Loss instance.
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN], except sparse loss functions such as sparse categorical crossentropy where shape =[batch_size, d0, .. dN-1] | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN] | 
| sample_weight | Optional sample_weightacts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. Ifsample_weightis a tensor of size[batch_size], then the total loss for each sample of the batch is rescaled by the corresponding element in thesample_weightvector. If the shape ofsample_weightis[batch_size, d0, .. dN-1](or can be broadcasted to this shape), then each loss element ofy_predis scaled by the corresponding value ofsample_weight. (Note ondN-1: all loss functions reduce by 1 dimension, usually axis=-1.) | 
| Returns | |
|---|---|
| Weighted loss float Tensor. IfreductionisNONE, this has shape[batch_size, d0, .. dN-1]; otherwise, it is scalar. (NotedN-1because all loss functions reduce by 1 dimension, usually axis=-1.) | 
| Raises | |
|---|---|
| ValueError | If the shape of sample_weightis invalid. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/losses/Hinge