| View source on GitHub | 
Computes Kullback-Leibler divergence loss between y_true and y_pred.
Inherits From: Loss
tf.keras.losses.KLDivergence(
    reduction=losses_utils.ReductionV2.AUTO, name='kl_divergence'
)
  loss = y_true * log(y_true / y_pred)
See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
y_true = [[0, 1], [0, 0]] y_pred = [[0.6, 0.4], [0.4, 0.6]] # Using 'auto'/'sum_over_batch_size' reduction type. kl = tf.keras.losses.KLDivergence() kl(y_true, y_pred).numpy() 0.458
# Calling with 'sample_weight'. kl(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy() 0.366
# Using 'sum' reduction type.
kl = tf.keras.losses.KLDivergence(
    reduction=tf.keras.losses.Reduction.SUM)
kl(y_true, y_pred).numpy()
0.916
 
# Using 'none' reduction type.
kl = tf.keras.losses.KLDivergence(
    reduction=tf.keras.losses.Reduction.NONE)
kl(y_true, y_pred).numpy()
array([0.916, -3.08e-06], dtype=float32)
 Usage with the compile() API:
model.compile(optimizer='sgd', loss=tf.keras.losses.KLDivergence())
| Args | |
|---|---|
| reduction | Type of tf.keras.losses.Reductionto apply to loss. Default value isAUTO.AUTOindicates that the reduction option will be determined by the usage context. For almost all cases this defaults toSUM_OVER_BATCH_SIZE. When used withtf.distribute.Strategy, outside of built-in training loops such astf.kerascompileandfit, usingAUTOorSUM_OVER_BATCH_SIZEwill raise an error. Please see this custom training tutorial for more details. | 
| name | Optional name for the instance. Defaults to 'kl_divergence'. | 
from_config
@classmethod
from_config(
    config
)
 Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
| config | Output of get_config(). | 
| Returns | |
|---|---|
| A Lossinstance. | 
get_configget_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
    y_true, y_pred, sample_weight=None
)
 Invokes the Loss instance.
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN], except sparse loss functions such as sparse categorical crossentropy where shape =[batch_size, d0, .. dN-1] | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN] | 
| sample_weight | Optional sample_weightacts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. Ifsample_weightis a tensor of size[batch_size], then the total loss for each sample of the batch is rescaled by the corresponding element in thesample_weightvector. If the shape ofsample_weightis[batch_size, d0, .. dN-1](or can be broadcasted to this shape), then each loss element ofy_predis scaled by the corresponding value ofsample_weight. (Note ondN-1: all loss functions reduce by 1 dimension, usually axis=-1.) | 
| Returns | |
|---|---|
| Weighted loss float Tensor. IfreductionisNONE, this has shape[batch_size, d0, .. dN-1]; otherwise, it is scalar. (NotedN-1because all loss functions reduce by 1 dimension, usually axis=-1.) | 
| Raises | |
|---|---|
| ValueError | If the shape of sample_weightis invalid. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/losses/KLDivergence