Computes the binary crossentropy loss.
tf.keras.metrics.binary_crossentropy(
    y_true, y_pred, from_logits=False, label_smoothing=0.0, axis=-1
)
  y_true = [[0, 1], [0, 0]] y_pred = [[0.6, 0.4], [0.4, 0.6]] loss = tf.keras.losses.binary_crossentropy(y_true, y_pred) assert loss.shape == (2,) loss.numpy() array([0.916 , 0.714], dtype=float32)
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN]. | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN]. | 
| from_logits | Whether y_predis expected to be a logits tensor. By default, we assume thaty_predencodes a probability distribution. | 
| label_smoothing | Float in [0, 1]. If > 0then smooth the labels by squeezing them towards 0.5 That is, using1. - 0.5 * label_smoothingfor the target class and0.5 * label_smoothingfor the non-target class. | 
| axis | The axis along which the mean is computed. Defaults to -1. | 
| Returns | |
|---|---|
| Binary crossentropy loss value. shape = [batch_size, d0, .. dN-1]. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/metrics/binary_crossentropy